77 lines
2.6 KiB
Python
77 lines
2.6 KiB
Python
#!/usr/bin/env python3
|
|
import sys
|
|
import spacy
|
|
|
|
nlp = spacy.load('en_core_web_sm')
|
|
|
|
def listify(text):
|
|
return [string.lemma_.lower() for string in nlp(text) if string.lemma_[0] in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ']
|
|
|
|
|
|
def compile(raw_model):
|
|
model = {}
|
|
|
|
for portion in raw_model:
|
|
text = listify(portion['text'])
|
|
category = portion['category']
|
|
for word in text:
|
|
try:
|
|
model[category].append(word)
|
|
except:
|
|
model[category] = [word]
|
|
model[category].sort()
|
|
all_models = [ { 'text': model, 'stopword': i/10} for i in range(0, 21) ]
|
|
for test_model in all_models:
|
|
correct = 0
|
|
classifier = Classifier(test_model)
|
|
for text in raw_model:
|
|
if classifier.check(text['text']) == text['category']:
|
|
correct += 1
|
|
test_model['correct'] = correct
|
|
print('tested a model')
|
|
best = all_models[0]
|
|
for test_model in all_models:
|
|
if test_model['correct'] > best['correct']:
|
|
best = test_model
|
|
del best['correct']
|
|
return best
|
|
return {'text': model}
|
|
|
|
|
|
class Classifier:
|
|
def __init__(self, model, supress_uncompiled_model_warning=False):
|
|
if type(model['text']) == dict:
|
|
self.model = model
|
|
else:
|
|
self.model = compile(model)
|
|
if not supress_uncompiled_model_warning:
|
|
print('WARNING: model was not compiled', file=sys.stderr)
|
|
print('In development, this is OK, but precompiling the model is preferred for production use.', file=sys.stderr)
|
|
self.warn = supress_uncompiled_model_warning
|
|
|
|
def check(self, text):
|
|
model = self.model
|
|
stopword_value = 0.5
|
|
try:
|
|
stopword_value = model['stopword']
|
|
except:
|
|
pass
|
|
stopwords = spacy.lang.en.stop_words.STOP_WORDS
|
|
model = model['text']
|
|
text = listify(text)
|
|
probs = {}
|
|
for word in text:
|
|
for category in model.keys():
|
|
for catword in model[category]:
|
|
if word == catword:
|
|
weight = ( stopword_value if word in stopwords else 1 ) / len(model[category])
|
|
try:
|
|
probs[category] += weight
|
|
except:
|
|
probs[category] = weight
|
|
most_likely = ['unknown', 0]
|
|
for category in probs.keys():
|
|
if probs[category] > most_likely[1]:
|
|
most_likely = [category, probs[category]]
|
|
return most_likely[0]
|