# GPTC General-purpose text classifier in Python GPTC provides both a CLI tool and a Python library. ## Installation pip install gptc[emoji] # handles emojis! (see section "Emoji") # Or, if you don't need emoji support, pip install gptc # no dependencies! ## CLI Tool ### Classifying text gptc classify [-n ] This will prompt for a string and classify it, then print (in JSON) a dict of the format `{category: probability, category:probability, ...}` to stdout. (For information about `-n `, see section "Ngrams.") Alternatively, if you only need the most likely category, you can use this: gptc classify [-n ] <-c|--category> This will prompt for a string and classify it, outputting the category on stdout (or "None" if it cannot determine anything). ### Compiling models gptc compile [-n ] [-c ] This will print the compiled model in JSON to stdout. If `-c` is specified, words and ngrams used less than `min_count` times will be excluded from the compiled model. ### Packing models gptc pack This will print the raw model in JSON to stdout. See `models/unpacked/` for an example of the format. Any exceptions will be printed to stderr. ## Library ### `gptc.Classifier(model, max_ngram_length=1)` Create a `Classifier` object using the given *compiled* model (as a dict, not JSON). For information about `max_ngram_length`, see section "Ngrams." #### `Classifier.confidence(text)` Classify `text`. Returns a dict of the format `{category: probability, category:probability, ...}` #### `Classifier.classify(text)` Classify `text`. Returns the category into which the text is placed (as a string), or `None` when it cannot classify the text. #### `Classifier.model` The classifier's model. #### `Classifier.has_emoji` Check whether emojis are supported by the `Classifier`. (See section "Emoji.") Equivalent to `gptc.has_emoji and gptc.model_has_emoji(model)`. ### `gptc.compile(raw_model, max_ngram_length=1, min_count=1)` Compile a raw model (as a list, not JSON) and return the compiled model (as a dict). For information about `max_ngram_length`, see section "Ngrams." Words or ngrams used less than `min_count` times throughout the input text are excluded from the model. ### `gptc.pack(directory, print_exceptions=False) Pack the model in `directory` and return a tuple of the format: (raw_model, [(exception,),(exception,)...]) Note that the exceptions are contained in single-item tuples. This is to allow more information to be provided without breaking the API in future versions of GPTC. See `models/unpacked/` for an example of the format. ### `gptc.has_emoji` `True` if the `emoji` package is installed (see section "Emoji"), `False` otherwise. ### `gptc.model_has_emoji(compiled_model)` Returns `True` if `compiled_model` was compiled with emoji support, `False` otherwise. ## Ngrams GPTC optionally supports using ngrams to improve classification accuracy. They are disabled by default (maximum length set to 1) for performance and compatibility reasons. Enabling them significantly increases the time required both for compilation and classification. The effect seems more significant for compilation than for classification. Compiled models are also much larger when ngrams are enabled. Larger maximum ngram lengths will result in slower performance and larger files. It is a good idea to experiment with different values and use the highest one at which GPTC is fast enough and models are small enough for your needs. Once a model is compiled at a certain maximum ngram length, it cannot be used for classification with a higher value. If you instantiate a `Classifier` with a model compiled with a lower `max_ngram_length`, the value will be silently reduced to the one used when compiling the model. Models compiled with older versions of GPTC which did not support ngrams are handled the same way as models compiled with `max_ngram_length=1`. ## Emoji If the [`emoji`](https://pypi.org/project/emoji/) package is installed, GPTC will automatically handle emojis the same way as words. If it is not installed, GPTC will still work but will ignore emojis. `emoji` must be installed on both the system used to compile the model and the system used to classify text. Emojis are ignored if it is missing on either system. ## Model format This section explains the raw model format, which is how you should create and edit models. Raw models are formatted as a list of dicts. See below for the format: [ { "text": "", "category": "" } ] GPTC handles models as Python `list`s of `dict`s of `str`s (for raw models) or `dict`s of `str`s and `float`s (for compiled models), and they can be stored in any way these Python objects can be. However, it is recommended to store them in JSON format for compatibility with the command-line tool. ## Example model An example model, which is designed to distinguish between texts written by Mark Twain and those written by William Shakespeare, is available in `models`. The raw model is in `models/raw.json`; the compiled model is in `models/compiled.json`. The example model was compiled with `max_ngram_length=10`. ## Benchmark A benchmark script is available for comparing performance of GPTC between different Python versions. To use it, run `benchmark.py` with all of the Python installations you want to test. It tests both compilation and classification. It uses the default Twain/Shakespeare model for both, and for classification it uses [Mark Antony's "Friends, Romans, countrymen" speech](https://en.wikipedia.org/wiki/Friends,_Romans,_countrymen,_lend_me_your_ears) from Shakespeare's *Julius Caesar*.