Compare commits

..

No commits in common. "master" and "v4.0.0" have entirely different histories.

13 changed files with 264 additions and 302 deletions

View File

@ -48,7 +48,7 @@ example of the format. Any exceptions will be printed to stderr.
Write binary data representing the model to `file`.
### `Model.deserialize(encoded_model)`
### `gptc.deserialize(encoded_model)`
Deserialize a `Model` from a file containing data from `Model.serialize()`.
@ -70,7 +70,7 @@ Return a confidence dict for the given token or ngram. This function is very
similar to `Model.confidence()`, except it treats the input as a single token
or ngram.
### `Model.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
### `gptc.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
Compile a raw model (as a list, not JSON) and return the compiled model (as a
`gptc.Model` object).
@ -115,7 +115,7 @@ See `models/unpacked/` for an example of the format.
### `gptc.Classifier(model, max_ngram_length=1)`
`Classifier` objects are deprecated starting with GPTC 3.1.0, and will be
removed in 5.0.0. See [the README from
removed in 4.0.0. See [the README from
3.0.2](https://git.kj7rrv.com/kj7rrv/gptc/src/tag/v3.0.1/README.md) if you need
documentation.

View File

@ -25,7 +25,7 @@ print(
round(
1000000
* timeit.timeit(
"gptc.Model.compile(raw_model, max_ngram_length)",
"gptc.compile(raw_model, max_ngram_length)",
number=compile_iterations,
globals=globals(),
)

View File

@ -2,11 +2,13 @@
"""General-Purpose Text Classifier"""
from gptc.pack import pack
from gptc.model import Model
from gptc.tokenizer import normalize
from gptc.compiler import compile as compile
from gptc.classifier import Classifier as Classifier
from gptc.pack import pack as pack
from gptc.model import Model as Model, deserialize as deserialize
from gptc.tokenizer import normalize as normalize
from gptc.exceptions import (
GPTCError,
ModelError,
InvalidModelError,
GPTCError as GPTCError,
ModelError as ModelError,
InvalidModelError as InvalidModelError,
)

View File

@ -44,6 +44,19 @@ def main() -> None:
type=int,
default=1,
)
group = classify_parser.add_mutually_exclusive_group()
group.add_argument(
"-j",
"--json",
help="output confidence dict as JSON (default)",
action="store_true",
)
group.add_argument(
"-c",
"--category",
help="output most likely category or `None`",
action="store_true",
)
check_parser = subparsers.add_parser(
"check", help="check one word or ngram in model"
@ -59,26 +72,31 @@ def main() -> None:
args = parser.parse_args()
if args.subparser_name == "compile":
with open(args.model, "r", encoding="utf-8") as input_file:
model = json.load(input_file)
with open(args.model, "r") as f:
model = json.load(f)
with open(args.out, "wb+") as output_file:
gptc.Model.compile(
with open(args.out, "wb+") as f:
gptc.compile(
model, args.max_ngram_length, args.min_count
).serialize(output_file)
).serialize(f)
elif args.subparser_name == "classify":
with open(args.model, "rb") as model_file:
model = gptc.Model.deserialize(model_file)
with open(args.model, "rb") as f:
model = gptc.deserialize(f)
if sys.stdin.isatty():
text = input("Text to analyse: ")
else:
text = sys.stdin.read()
print(json.dumps(model.confidence(text, args.max_ngram_length)))
if args.category:
classifier = gptc.Classifier(model, args.max_ngram_length)
print(classifier.classify(text))
else:
probabilities = model.confidence(text, args.max_ngram_length)
print(json.dumps(probabilities))
elif args.subparser_name == "check":
with open(args.model, "rb") as model_file:
model = gptc.Model.deserialize(model_file)
with open(args.model, "rb") as f:
model = gptc.deserialize(f)
print(json.dumps(model.get(args.token)))
else:
print(json.dumps(gptc.pack(args.model, True)[0]))

68
gptc/classifier.py Executable file
View File

@ -0,0 +1,68 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import gptc.model
from typing import Dict, Union
class Classifier:
"""A text classifier.
Parameters
----------
model : dict
A compiled GPTC model.
max_ngram_length : int
The maximum ngram length to use when tokenizing input. If this is
greater than the value used when the model was compiled, it will be
silently lowered to that value.
Attributes
----------
model : dict
The model used.
"""
def __init__(self, model: gptc.model.Model, max_ngram_length: int = 1):
self.model = model
model_ngrams = model.max_ngram_length
self.max_ngram_length = min(max_ngram_length, model_ngrams)
def confidence(self, text: str) -> Dict[str, float]:
"""Classify text with confidence.
Parameters
----------
text : str
The text to classify
Returns
-------
dict
{category:probability, category:probability...} or {} if no words
matching any categories in the model were found
"""
return self.model.confidence(text, self.max_ngram_length)
def classify(self, text: str) -> Union[str, None]:
"""Classify text.
Parameters
----------
text : str
The text to classify
Returns
-------
str or None
The most likely category, or None if no words matching any
category in the model were found.
"""
probs: Dict[str, float] = self.confidence(text)
try:
return sorted(probs.items(), key=lambda x: x[1])[-1][0]
except IndexError:
return None

73
gptc/compiler.py Executable file
View File

@ -0,0 +1,73 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import gptc.tokenizer
import gptc.model
from typing import Iterable, Mapping, List, Dict, Union
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> gptc.model.Model:
"""Compile a raw model.
Parameters
----------
raw_model : list of dict
A raw GPTC model.
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
"""
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return gptc.model.Model(model, names, max_ngram_length, hash_algorithm)

View File

@ -1,120 +1,10 @@
# SPDX-License-Identifier: GPL-3.0-or-later
from typing import (
Iterable,
Mapping,
List,
Dict,
cast,
BinaryIO,
Tuple,
TypedDict,
)
import json
import gptc.tokenizer
from gptc.exceptions import InvalidModelError
import gptc.weighting
def _count_words(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int,
hash_algorithm: str,
) -> Tuple[Dict[int, Dict[str, int]], Dict[str, int], List[str]]:
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash_list(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
return word_counts, category_lengths, names
def _get_weights(
min_count: int,
word_counts: Dict[int, Dict[str, int]],
category_lengths: Dict[str, int],
names: List[str],
) -> Dict[int, List[int]]:
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return model
class ExplanationEntry(TypedDict):
weight: float
probabilities: Dict[str, float]
count: int
Explanation = Dict[
str,
ExplanationEntry,
]
Log = List[Tuple[str, float, List[float]]]
class Confidences(dict[str, float]):
def __init__(self, probs: Dict[str, float]):
dict.__init__(self, probs)
class TransparentConfidences(Confidences):
def __init__(
self,
probs: Dict[str, float],
explanation: Explanation,
):
self.explanation = explanation
Confidences.__init__(self, probs)
def convert_log(log: Log, names: List[str]) -> Explanation:
explanation: Explanation = {}
for word2, weight, word_probs in log:
if word2 in explanation:
explanation[word2]["count"] += 1
else:
explanation[word2] = {
"weight": weight,
"probabilities": {
name: word_probs[index] for index, name in enumerate(names)
},
"count": 1,
}
return explanation
from typing import Iterable, Mapping, List, Dict, Union, cast, BinaryIO
import json
class Model:
@ -130,9 +20,7 @@ class Model:
self.max_ngram_length = max_ngram_length
self.hash_algorithm = hash_algorithm
def confidence(
self, text: str, max_ngram_length: int, transparent: bool = False
) -> Confidences:
def confidence(self, text: str, max_ngram_length: int) -> Dict[str, float]:
"""Classify text with confidence.
Parameters
@ -152,42 +40,19 @@ class Model:
"""
model = self.weights
max_ngram_length = min(self.max_ngram_length, max_ngram_length)
raw_tokens = gptc.tokenizer.tokenize(
tokens = gptc.tokenizer.hash(
gptc.tokenizer.tokenize(
text, min(max_ngram_length, self.max_ngram_length)
)
tokens = gptc.tokenizer.hash_list(
raw_tokens,
),
self.hash_algorithm,
)
if transparent:
token_map = {tokens[i]: raw_tokens[i] for i in range(len(tokens))}
log: Log = []
numbered_probs: Dict[int, float] = {}
for word in tokens:
try:
unweighted_numbers = [
i / 65535 for i in cast(List[float], model[word])
]
weight, weighted_numbers = gptc.weighting.weight(
unweighted_numbers
weighted_numbers = gptc.weighting.weight(
[i / 65535 for i in cast(List[float], model[word])]
)
if transparent:
log.append(
(
token_map[word],
weight,
unweighted_numbers,
)
)
for category, value in enumerate(weighted_numbers):
try:
numbered_probs[category] += value
@ -195,25 +60,17 @@ class Model:
numbered_probs[category] = value
except KeyError:
pass
total = sum(numbered_probs.values())
probs: Dict[str, float] = {
self.names[category]: value / total
for category, value in numbered_probs.items()
}
if transparent:
explanation = convert_log(log, self.names)
return TransparentConfidences(probs, explanation)
return Confidences(probs)
return probs
def get(self, token: str) -> Dict[str, float]:
try:
weights = self.weights[
gptc.tokenizer.hash_single(
gptc.tokenizer.normalize(token), self.hash_algorithm
)
gptc.tokenizer.hash_single(gptc.tokenizer.normalize(token))
]
except KeyError:
return {}
@ -222,8 +79,8 @@ class Model:
for index, category in enumerate(self.names)
}
def serialize(self, file: BinaryIO) -> None:
file.write(b"GPTC model v6\n")
def serialize(self, file: BinaryIO):
file.write(b"GPTC model v5\n")
file.write(
json.dumps(
{
@ -240,39 +97,10 @@ class Model:
+ b"".join([weight.to_bytes(2, "big") for weight in weights])
)
@staticmethod
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> 'Model':
"""Compile a raw model.
Parameters
----------
raw_model : list of dict
A raw GPTC model.
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
"""
word_counts, category_lengths, names = _count_words(
raw_model, max_ngram_length, hash_algorithm
)
model = _get_weights(min_count, word_counts, category_lengths, names)
return Model(model, names, max_ngram_length, hash_algorithm)
@staticmethod
def deserialize(encoded_model: BinaryIO) -> "Model":
def deserialize(encoded_model: BinaryIO) -> Model:
prefix = encoded_model.read(14)
if prefix != b"GPTC model v6\n":
if prefix != b"GPTC model v5\n":
raise InvalidModelError()
config_json = b""
@ -280,38 +108,37 @@ class Model:
byte = encoded_model.read(1)
if byte == b"\n":
break
if byte == b"":
elif byte == b"":
raise InvalidModelError()
else:
config_json += byte
try:
config = json.loads(config_json.decode("utf-8"))
except (UnicodeDecodeError, json.JSONDecodeError) as exc:
raise InvalidModelError() from exc
except (UnicodeDecodeError, json.JSONDecodeError):
raise InvalidModelError()
try:
names = config["names"]
max_ngram_length = config["max_ngram_length"]
hash_algorithm = config["hash_algorithm"]
except KeyError as exc:
raise InvalidModelError() from exc
except KeyError:
raise InvalidModelError()
if not (
isinstance(names, list) and isinstance(max_ngram_length, int)
) or not all(isinstance(name, str) for name in names):
) or not all([isinstance(name, str) for name in names]):
raise InvalidModelError()
weight_code_length = 6 + 2 * len(names)
weights: Dict[int, List[int]] = {}
weights: Dict[int : List[int]] = {}
while True:
code = encoded_model.read(weight_code_length)
if not code:
break
if len(code) != weight_code_length:
elif len(code) != weight_code_length:
raise InvalidModelError()
weights[int.from_bytes(code[:6], "big")] = [

View File

@ -7,7 +7,7 @@ from typing import List, Dict, Tuple
def pack(
directory: str, print_exceptions: bool = False
) -> Tuple[List[Dict[str, str]], List[Tuple[OSError]]]:
) -> Tuple[List[Dict[str, str]], List[Tuple[Exception]]]:
paths = os.listdir(directory)
texts: Dict[str, List[str]] = {}
exceptions = []
@ -17,18 +17,16 @@ def pack(
try:
for file in os.listdir(os.path.join(directory, path)):
try:
with open(
os.path.join(directory, path, file), encoding="utf-8"
) as input_file:
texts[path].append(input_file.read())
except OSError as error:
exceptions.append((error,))
with open(os.path.join(directory, path, file)) as f:
texts[path].append(f.read())
except Exception as e:
exceptions.append((e,))
if print_exceptions:
print(error, file=sys.stderr)
except OSError as error:
exceptions.append((error,))
print(e, file=sys.stderr)
except Exception as e:
exceptions.append((e,))
if print_exceptions:
print(error, file=sys.stderr)
print(e, file=sys.stderr)
raw_model = []

View File

@ -1,13 +1,13 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import unicodedata
from typing import List, cast
from typing import List, Union, Callable
import hashlib
import emoji
import unicodedata
def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
text = unicodedata.normalize("NFKD", text).casefold()
text = unicodedata.normalize("NFKD", text).lower()
parts = []
highest_end = 0
for emoji_part in emoji.emoji_list(text):
@ -37,7 +37,7 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
if max_ngram_length == 1:
return tokens
else:
ngrams = []
for ngram_length in range(1, max_ngram_length + 1):
for index in range(len(tokens) + 1 - ngram_length):
@ -45,13 +45,13 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
return ngrams
def _hash_single(token: str, hash_function: type) -> int:
def hash_single(token: str, hash_function: Callable) -> int:
return int.from_bytes(
hash_function(token.encode("utf-8")).digest()[:6], "big"
)
def _get_hash_function(hash_algorithm: str) -> type:
def hash(tokens: List[str], hash_algorithm: str) -> List[int]:
if hash_algorithm in {
"sha224",
"md5",
@ -68,19 +68,11 @@ def _get_hash_function(hash_algorithm: str) -> type:
"shake_128",
"sha3_384",
}:
return cast(type, getattr(hashlib, hash_algorithm))
hash_function = getattr(hashlib, hash_algorithm)
return [hash_single(token, hash_function) for token in tokens]
else:
raise ValueError("not a valid hash function: " + hash_algorithm)
def hash_single(token: str, hash_algorithm: str) -> int:
return _hash_single(token, _get_hash_function(hash_algorithm))
def hash_list(tokens: List[str], hash_algorithm: str) -> List[int]:
hash_function = _get_hash_function(hash_algorithm)
return [_hash_single(token, hash_function) for token in tokens]
def normalize(text: str) -> str:
return " ".join(tokenize(text, 1))

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import math
from typing import Sequence, Tuple, List
from typing import Sequence, Union, Tuple, List
def _mean(numbers: Sequence[float]) -> float:
@ -39,8 +39,8 @@ def _standard_deviation(numbers: Sequence[float]) -> float:
return math.sqrt(_mean(squared_deviations))
def weight(numbers: Sequence[float]) -> Tuple[float, List[float]]:
def weight(numbers: Sequence[float]) -> List[float]:
standard_deviation = _standard_deviation(numbers)
weight_assigned = standard_deviation * 2
weighted_numbers = [i * weight_assigned for i in numbers]
return weight_assigned, weighted_numbers
weight = standard_deviation * 2
weighted_numbers = [i * weight for i in numbers]
return weighted_numbers

Binary file not shown.

View File

@ -1,16 +0,0 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import cProfile
import gptc
import json
import sys
max_ngram_length = 10
with open("models/raw.json") as f:
raw_model = json.load(f)
with open("models/benchmark_text.txt") as f:
text = f.read()
cProfile.run("gptc.Model.compile(raw_model, max_ngram_length)")

View File

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "gptc"
version = "4.0.1"
version = "4.0.0"
description = "General-purpose text classifier"
readme = "README.md"
authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}]