Compare commits

..

No commits in common. "master" and "v4.0.0" have entirely different histories.

13 changed files with 264 additions and 302 deletions

View File

@ -48,7 +48,7 @@ example of the format. Any exceptions will be printed to stderr.
Write binary data representing the model to `file`. Write binary data representing the model to `file`.
### `Model.deserialize(encoded_model)` ### `gptc.deserialize(encoded_model)`
Deserialize a `Model` from a file containing data from `Model.serialize()`. Deserialize a `Model` from a file containing data from `Model.serialize()`.
@ -70,7 +70,7 @@ Return a confidence dict for the given token or ngram. This function is very
similar to `Model.confidence()`, except it treats the input as a single token similar to `Model.confidence()`, except it treats the input as a single token
or ngram. or ngram.
### `Model.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")` ### `gptc.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
Compile a raw model (as a list, not JSON) and return the compiled model (as a Compile a raw model (as a list, not JSON) and return the compiled model (as a
`gptc.Model` object). `gptc.Model` object).
@ -115,7 +115,7 @@ See `models/unpacked/` for an example of the format.
### `gptc.Classifier(model, max_ngram_length=1)` ### `gptc.Classifier(model, max_ngram_length=1)`
`Classifier` objects are deprecated starting with GPTC 3.1.0, and will be `Classifier` objects are deprecated starting with GPTC 3.1.0, and will be
removed in 5.0.0. See [the README from removed in 4.0.0. See [the README from
3.0.2](https://git.kj7rrv.com/kj7rrv/gptc/src/tag/v3.0.1/README.md) if you need 3.0.2](https://git.kj7rrv.com/kj7rrv/gptc/src/tag/v3.0.1/README.md) if you need
documentation. documentation.

View File

@ -25,7 +25,7 @@ print(
round( round(
1000000 1000000
* timeit.timeit( * timeit.timeit(
"gptc.Model.compile(raw_model, max_ngram_length)", "gptc.compile(raw_model, max_ngram_length)",
number=compile_iterations, number=compile_iterations,
globals=globals(), globals=globals(),
) )

View File

@ -2,11 +2,13 @@
"""General-Purpose Text Classifier""" """General-Purpose Text Classifier"""
from gptc.pack import pack from gptc.compiler import compile as compile
from gptc.model import Model from gptc.classifier import Classifier as Classifier
from gptc.tokenizer import normalize from gptc.pack import pack as pack
from gptc.model import Model as Model, deserialize as deserialize
from gptc.tokenizer import normalize as normalize
from gptc.exceptions import ( from gptc.exceptions import (
GPTCError, GPTCError as GPTCError,
ModelError, ModelError as ModelError,
InvalidModelError, InvalidModelError as InvalidModelError,
) )

View File

@ -44,6 +44,19 @@ def main() -> None:
type=int, type=int,
default=1, default=1,
) )
group = classify_parser.add_mutually_exclusive_group()
group.add_argument(
"-j",
"--json",
help="output confidence dict as JSON (default)",
action="store_true",
)
group.add_argument(
"-c",
"--category",
help="output most likely category or `None`",
action="store_true",
)
check_parser = subparsers.add_parser( check_parser = subparsers.add_parser(
"check", help="check one word or ngram in model" "check", help="check one word or ngram in model"
@ -59,26 +72,31 @@ def main() -> None:
args = parser.parse_args() args = parser.parse_args()
if args.subparser_name == "compile": if args.subparser_name == "compile":
with open(args.model, "r", encoding="utf-8") as input_file: with open(args.model, "r") as f:
model = json.load(input_file) model = json.load(f)
with open(args.out, "wb+") as output_file: with open(args.out, "wb+") as f:
gptc.Model.compile( gptc.compile(
model, args.max_ngram_length, args.min_count model, args.max_ngram_length, args.min_count
).serialize(output_file) ).serialize(f)
elif args.subparser_name == "classify": elif args.subparser_name == "classify":
with open(args.model, "rb") as model_file: with open(args.model, "rb") as f:
model = gptc.Model.deserialize(model_file) model = gptc.deserialize(f)
if sys.stdin.isatty(): if sys.stdin.isatty():
text = input("Text to analyse: ") text = input("Text to analyse: ")
else: else:
text = sys.stdin.read() text = sys.stdin.read()
print(json.dumps(model.confidence(text, args.max_ngram_length))) if args.category:
classifier = gptc.Classifier(model, args.max_ngram_length)
print(classifier.classify(text))
else:
probabilities = model.confidence(text, args.max_ngram_length)
print(json.dumps(probabilities))
elif args.subparser_name == "check": elif args.subparser_name == "check":
with open(args.model, "rb") as model_file: with open(args.model, "rb") as f:
model = gptc.Model.deserialize(model_file) model = gptc.deserialize(f)
print(json.dumps(model.get(args.token))) print(json.dumps(model.get(args.token)))
else: else:
print(json.dumps(gptc.pack(args.model, True)[0])) print(json.dumps(gptc.pack(args.model, True)[0]))

68
gptc/classifier.py Executable file
View File

@ -0,0 +1,68 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import gptc.model
from typing import Dict, Union
class Classifier:
"""A text classifier.
Parameters
----------
model : dict
A compiled GPTC model.
max_ngram_length : int
The maximum ngram length to use when tokenizing input. If this is
greater than the value used when the model was compiled, it will be
silently lowered to that value.
Attributes
----------
model : dict
The model used.
"""
def __init__(self, model: gptc.model.Model, max_ngram_length: int = 1):
self.model = model
model_ngrams = model.max_ngram_length
self.max_ngram_length = min(max_ngram_length, model_ngrams)
def confidence(self, text: str) -> Dict[str, float]:
"""Classify text with confidence.
Parameters
----------
text : str
The text to classify
Returns
-------
dict
{category:probability, category:probability...} or {} if no words
matching any categories in the model were found
"""
return self.model.confidence(text, self.max_ngram_length)
def classify(self, text: str) -> Union[str, None]:
"""Classify text.
Parameters
----------
text : str
The text to classify
Returns
-------
str or None
The most likely category, or None if no words matching any
category in the model were found.
"""
probs: Dict[str, float] = self.confidence(text)
try:
return sorted(probs.items(), key=lambda x: x[1])[-1][0]
except IndexError:
return None

73
gptc/compiler.py Executable file
View File

@ -0,0 +1,73 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import gptc.tokenizer
import gptc.model
from typing import Iterable, Mapping, List, Dict, Union
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> gptc.model.Model:
"""Compile a raw model.
Parameters
----------
raw_model : list of dict
A raw GPTC model.
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
"""
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return gptc.model.Model(model, names, max_ngram_length, hash_algorithm)

View File

@ -1,120 +1,10 @@
# SPDX-License-Identifier: GPL-3.0-or-later # SPDX-License-Identifier: GPL-3.0-or-later
from typing import (
Iterable,
Mapping,
List,
Dict,
cast,
BinaryIO,
Tuple,
TypedDict,
)
import json
import gptc.tokenizer import gptc.tokenizer
from gptc.exceptions import InvalidModelError from gptc.exceptions import InvalidModelError
import gptc.weighting import gptc.weighting
from typing import Iterable, Mapping, List, Dict, Union, cast, BinaryIO
def _count_words( import json
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int,
hash_algorithm: str,
) -> Tuple[Dict[int, Dict[str, int]], Dict[str, int], List[str]]:
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash_list(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
return word_counts, category_lengths, names
def _get_weights(
min_count: int,
word_counts: Dict[int, Dict[str, int]],
category_lengths: Dict[str, int],
names: List[str],
) -> Dict[int, List[int]]:
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return model
class ExplanationEntry(TypedDict):
weight: float
probabilities: Dict[str, float]
count: int
Explanation = Dict[
str,
ExplanationEntry,
]
Log = List[Tuple[str, float, List[float]]]
class Confidences(dict[str, float]):
def __init__(self, probs: Dict[str, float]):
dict.__init__(self, probs)
class TransparentConfidences(Confidences):
def __init__(
self,
probs: Dict[str, float],
explanation: Explanation,
):
self.explanation = explanation
Confidences.__init__(self, probs)
def convert_log(log: Log, names: List[str]) -> Explanation:
explanation: Explanation = {}
for word2, weight, word_probs in log:
if word2 in explanation:
explanation[word2]["count"] += 1
else:
explanation[word2] = {
"weight": weight,
"probabilities": {
name: word_probs[index] for index, name in enumerate(names)
},
"count": 1,
}
return explanation
class Model: class Model:
@ -130,9 +20,7 @@ class Model:
self.max_ngram_length = max_ngram_length self.max_ngram_length = max_ngram_length
self.hash_algorithm = hash_algorithm self.hash_algorithm = hash_algorithm
def confidence( def confidence(self, text: str, max_ngram_length: int) -> Dict[str, float]:
self, text: str, max_ngram_length: int, transparent: bool = False
) -> Confidences:
"""Classify text with confidence. """Classify text with confidence.
Parameters Parameters
@ -152,42 +40,19 @@ class Model:
""" """
model = self.weights model = self.weights
max_ngram_length = min(self.max_ngram_length, max_ngram_length)
raw_tokens = gptc.tokenizer.tokenize( tokens = gptc.tokenizer.hash(
gptc.tokenizer.tokenize(
text, min(max_ngram_length, self.max_ngram_length) text, min(max_ngram_length, self.max_ngram_length)
) ),
tokens = gptc.tokenizer.hash_list(
raw_tokens,
self.hash_algorithm, self.hash_algorithm,
) )
if transparent:
token_map = {tokens[i]: raw_tokens[i] for i in range(len(tokens))}
log: Log = []
numbered_probs: Dict[int, float] = {} numbered_probs: Dict[int, float] = {}
for word in tokens: for word in tokens:
try: try:
unweighted_numbers = [ weighted_numbers = gptc.weighting.weight(
i / 65535 for i in cast(List[float], model[word]) [i / 65535 for i in cast(List[float], model[word])]
]
weight, weighted_numbers = gptc.weighting.weight(
unweighted_numbers
) )
if transparent:
log.append(
(
token_map[word],
weight,
unweighted_numbers,
)
)
for category, value in enumerate(weighted_numbers): for category, value in enumerate(weighted_numbers):
try: try:
numbered_probs[category] += value numbered_probs[category] += value
@ -195,25 +60,17 @@ class Model:
numbered_probs[category] = value numbered_probs[category] = value
except KeyError: except KeyError:
pass pass
total = sum(numbered_probs.values()) total = sum(numbered_probs.values())
probs: Dict[str, float] = { probs: Dict[str, float] = {
self.names[category]: value / total self.names[category]: value / total
for category, value in numbered_probs.items() for category, value in numbered_probs.items()
} }
return probs
if transparent:
explanation = convert_log(log, self.names)
return TransparentConfidences(probs, explanation)
return Confidences(probs)
def get(self, token: str) -> Dict[str, float]: def get(self, token: str) -> Dict[str, float]:
try: try:
weights = self.weights[ weights = self.weights[
gptc.tokenizer.hash_single( gptc.tokenizer.hash_single(gptc.tokenizer.normalize(token))
gptc.tokenizer.normalize(token), self.hash_algorithm
)
] ]
except KeyError: except KeyError:
return {} return {}
@ -222,8 +79,8 @@ class Model:
for index, category in enumerate(self.names) for index, category in enumerate(self.names)
} }
def serialize(self, file: BinaryIO) -> None: def serialize(self, file: BinaryIO):
file.write(b"GPTC model v6\n") file.write(b"GPTC model v5\n")
file.write( file.write(
json.dumps( json.dumps(
{ {
@ -240,39 +97,10 @@ class Model:
+ b"".join([weight.to_bytes(2, "big") for weight in weights]) + b"".join([weight.to_bytes(2, "big") for weight in weights])
) )
@staticmethod
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> 'Model':
"""Compile a raw model.
Parameters def deserialize(encoded_model: BinaryIO) -> Model:
----------
raw_model : list of dict
A raw GPTC model.
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
"""
word_counts, category_lengths, names = _count_words(
raw_model, max_ngram_length, hash_algorithm
)
model = _get_weights(min_count, word_counts, category_lengths, names)
return Model(model, names, max_ngram_length, hash_algorithm)
@staticmethod
def deserialize(encoded_model: BinaryIO) -> "Model":
prefix = encoded_model.read(14) prefix = encoded_model.read(14)
if prefix != b"GPTC model v6\n": if prefix != b"GPTC model v5\n":
raise InvalidModelError() raise InvalidModelError()
config_json = b"" config_json = b""
@ -280,38 +108,37 @@ class Model:
byte = encoded_model.read(1) byte = encoded_model.read(1)
if byte == b"\n": if byte == b"\n":
break break
elif byte == b"":
if byte == b"":
raise InvalidModelError() raise InvalidModelError()
else:
config_json += byte config_json += byte
try: try:
config = json.loads(config_json.decode("utf-8")) config = json.loads(config_json.decode("utf-8"))
except (UnicodeDecodeError, json.JSONDecodeError) as exc: except (UnicodeDecodeError, json.JSONDecodeError):
raise InvalidModelError() from exc raise InvalidModelError()
try: try:
names = config["names"] names = config["names"]
max_ngram_length = config["max_ngram_length"] max_ngram_length = config["max_ngram_length"]
hash_algorithm = config["hash_algorithm"] hash_algorithm = config["hash_algorithm"]
except KeyError as exc: except KeyError:
raise InvalidModelError() from exc raise InvalidModelError()
if not ( if not (
isinstance(names, list) and isinstance(max_ngram_length, int) isinstance(names, list) and isinstance(max_ngram_length, int)
) or not all(isinstance(name, str) for name in names): ) or not all([isinstance(name, str) for name in names]):
raise InvalidModelError() raise InvalidModelError()
weight_code_length = 6 + 2 * len(names) weight_code_length = 6 + 2 * len(names)
weights: Dict[int, List[int]] = {} weights: Dict[int : List[int]] = {}
while True: while True:
code = encoded_model.read(weight_code_length) code = encoded_model.read(weight_code_length)
if not code: if not code:
break break
if len(code) != weight_code_length: elif len(code) != weight_code_length:
raise InvalidModelError() raise InvalidModelError()
weights[int.from_bytes(code[:6], "big")] = [ weights[int.from_bytes(code[:6], "big")] = [

View File

@ -7,7 +7,7 @@ from typing import List, Dict, Tuple
def pack( def pack(
directory: str, print_exceptions: bool = False directory: str, print_exceptions: bool = False
) -> Tuple[List[Dict[str, str]], List[Tuple[OSError]]]: ) -> Tuple[List[Dict[str, str]], List[Tuple[Exception]]]:
paths = os.listdir(directory) paths = os.listdir(directory)
texts: Dict[str, List[str]] = {} texts: Dict[str, List[str]] = {}
exceptions = [] exceptions = []
@ -17,18 +17,16 @@ def pack(
try: try:
for file in os.listdir(os.path.join(directory, path)): for file in os.listdir(os.path.join(directory, path)):
try: try:
with open( with open(os.path.join(directory, path, file)) as f:
os.path.join(directory, path, file), encoding="utf-8" texts[path].append(f.read())
) as input_file: except Exception as e:
texts[path].append(input_file.read()) exceptions.append((e,))
except OSError as error:
exceptions.append((error,))
if print_exceptions: if print_exceptions:
print(error, file=sys.stderr) print(e, file=sys.stderr)
except OSError as error: except Exception as e:
exceptions.append((error,)) exceptions.append((e,))
if print_exceptions: if print_exceptions:
print(error, file=sys.stderr) print(e, file=sys.stderr)
raw_model = [] raw_model = []

View File

@ -1,13 +1,13 @@
# SPDX-License-Identifier: GPL-3.0-or-later # SPDX-License-Identifier: GPL-3.0-or-later
import unicodedata from typing import List, Union, Callable
from typing import List, cast
import hashlib import hashlib
import emoji import emoji
import unicodedata
def tokenize(text: str, max_ngram_length: int = 1) -> List[str]: def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
text = unicodedata.normalize("NFKD", text).casefold() text = unicodedata.normalize("NFKD", text).lower()
parts = [] parts = []
highest_end = 0 highest_end = 0
for emoji_part in emoji.emoji_list(text): for emoji_part in emoji.emoji_list(text):
@ -37,7 +37,7 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
if max_ngram_length == 1: if max_ngram_length == 1:
return tokens return tokens
else:
ngrams = [] ngrams = []
for ngram_length in range(1, max_ngram_length + 1): for ngram_length in range(1, max_ngram_length + 1):
for index in range(len(tokens) + 1 - ngram_length): for index in range(len(tokens) + 1 - ngram_length):
@ -45,13 +45,13 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
return ngrams return ngrams
def _hash_single(token: str, hash_function: type) -> int: def hash_single(token: str, hash_function: Callable) -> int:
return int.from_bytes( return int.from_bytes(
hash_function(token.encode("utf-8")).digest()[:6], "big" hash_function(token.encode("utf-8")).digest()[:6], "big"
) )
def _get_hash_function(hash_algorithm: str) -> type: def hash(tokens: List[str], hash_algorithm: str) -> List[int]:
if hash_algorithm in { if hash_algorithm in {
"sha224", "sha224",
"md5", "md5",
@ -68,19 +68,11 @@ def _get_hash_function(hash_algorithm: str) -> type:
"shake_128", "shake_128",
"sha3_384", "sha3_384",
}: }:
return cast(type, getattr(hashlib, hash_algorithm)) hash_function = getattr(hashlib, hash_algorithm)
return [hash_single(token, hash_function) for token in tokens]
else:
raise ValueError("not a valid hash function: " + hash_algorithm) raise ValueError("not a valid hash function: " + hash_algorithm)
def hash_single(token: str, hash_algorithm: str) -> int:
return _hash_single(token, _get_hash_function(hash_algorithm))
def hash_list(tokens: List[str], hash_algorithm: str) -> List[int]:
hash_function = _get_hash_function(hash_algorithm)
return [_hash_single(token, hash_function) for token in tokens]
def normalize(text: str) -> str: def normalize(text: str) -> str:
return " ".join(tokenize(text, 1)) return " ".join(tokenize(text, 1))

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-3.0-or-later # SPDX-License-Identifier: GPL-3.0-or-later
import math import math
from typing import Sequence, Tuple, List from typing import Sequence, Union, Tuple, List
def _mean(numbers: Sequence[float]) -> float: def _mean(numbers: Sequence[float]) -> float:
@ -39,8 +39,8 @@ def _standard_deviation(numbers: Sequence[float]) -> float:
return math.sqrt(_mean(squared_deviations)) return math.sqrt(_mean(squared_deviations))
def weight(numbers: Sequence[float]) -> Tuple[float, List[float]]: def weight(numbers: Sequence[float]) -> List[float]:
standard_deviation = _standard_deviation(numbers) standard_deviation = _standard_deviation(numbers)
weight_assigned = standard_deviation * 2 weight = standard_deviation * 2
weighted_numbers = [i * weight_assigned for i in numbers] weighted_numbers = [i * weight for i in numbers]
return weight_assigned, weighted_numbers return weighted_numbers

Binary file not shown.

View File

@ -1,16 +0,0 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import cProfile
import gptc
import json
import sys
max_ngram_length = 10
with open("models/raw.json") as f:
raw_model = json.load(f)
with open("models/benchmark_text.txt") as f:
text = f.read()
cProfile.run("gptc.Model.compile(raw_model, max_ngram_length)")

View File

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project] [project]
name = "gptc" name = "gptc"
version = "4.0.1" version = "4.0.0"
description = "General-purpose text classifier" description = "General-purpose text classifier"
readme = "README.md" readme = "README.md"
authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}] authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}]