Compare commits
No commits in common. "master" and "v3.0.0" have entirely different histories.
80
README.md
80
README.md
|
@ -18,19 +18,18 @@ This will prompt for a string and classify it, then print (in JSON) a dict of
|
||||||
the format `{category: probability, category:probability, ...}` to stdout. (For
|
the format `{category: probability, category:probability, ...}` to stdout. (For
|
||||||
information about `-n <max_ngram_length>`, see section "Ngrams.")
|
information about `-n <max_ngram_length>`, see section "Ngrams.")
|
||||||
|
|
||||||
### Checking individual words or ngrams
|
Alternatively, if you only need the most likely category, you can use this:
|
||||||
|
|
||||||
gptc check <compiled model file> <token or ngram>
|
gptc classify [-n <max_ngram_length>] <-c|--category> <compiled model file>
|
||||||
|
|
||||||
This is very similar to `gptc classify`, except it takes the input as an
|
This will prompt for a string and classify it, outputting the category on
|
||||||
argument, and it treats the input as a single token or ngram.
|
stdout (or "None" if it cannot determine anything).
|
||||||
|
|
||||||
### Compiling models
|
### Compiling models
|
||||||
|
|
||||||
gptc compile [-n <max_ngram_length>] [-c <min_count>] <raw model file> <compiled model file>
|
gptc compile [-n <max_ngram_length>] [-c <min_count>] <raw model file>
|
||||||
|
|
||||||
This will write the compiled model encoded in binary format to `<compiled model
|
This will print the compiled model encoded in binary format to stdout.
|
||||||
file>`.
|
|
||||||
|
|
||||||
If `-c` is specified, words and ngrams used less than `min_count` times will be
|
If `-c` is specified, words and ngrams used less than `min_count` times will be
|
||||||
excluded from the compiled model.
|
excluded from the compiled model.
|
||||||
|
@ -44,15 +43,14 @@ example of the format. Any exceptions will be printed to stderr.
|
||||||
|
|
||||||
## Library
|
## Library
|
||||||
|
|
||||||
### `Model.serialize(file)`
|
### `gptc.Classifier(model, max_ngram_length=1)`
|
||||||
|
|
||||||
Write binary data representing the model to `file`.
|
Create a `Classifier` object using the given compiled model (as a `gptc.Model`
|
||||||
|
object, not as a serialized byte string).
|
||||||
|
|
||||||
### `Model.deserialize(encoded_model)`
|
For information about `max_ngram_length`, see section "Ngrams."
|
||||||
|
|
||||||
Deserialize a `Model` from a file containing data from `Model.serialize()`.
|
#### `Classifier.confidence(text)`
|
||||||
|
|
||||||
### `Model.confidence(text, max_ngram_length)`
|
|
||||||
|
|
||||||
Classify `text`. Returns a dict of the format `{category: probability,
|
Classify `text`. Returns a dict of the format `{category: probability,
|
||||||
category:probability, ...}`
|
category:probability, ...}`
|
||||||
|
@ -62,15 +60,16 @@ common words between the input and the training data (likely, for example, with
|
||||||
input in a different language from the training data), an empty dict will be
|
input in a different language from the training data), an empty dict will be
|
||||||
returned.
|
returned.
|
||||||
|
|
||||||
For information about `max_ngram_length`, see section "Ngrams."
|
#### `Classifier.classify(text)`
|
||||||
|
|
||||||
### `Model.get(token)`
|
Classify `text`. Returns the category into which the text is placed (as a
|
||||||
|
string), or `None` when it cannot classify the text.
|
||||||
|
|
||||||
Return a confidence dict for the given token or ngram. This function is very
|
#### `Classifier.model`
|
||||||
similar to `Model.confidence()`, except it treats the input as a single token
|
|
||||||
or ngram.
|
|
||||||
|
|
||||||
### `Model.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
|
The classifier's model.
|
||||||
|
|
||||||
|
### `gptc.compile(raw_model, max_ngram_length=1, min_count=1)`
|
||||||
|
|
||||||
Compile a raw model (as a list, not JSON) and return the compiled model (as a
|
Compile a raw model (as a list, not JSON) and return the compiled model (as a
|
||||||
`gptc.Model` object).
|
`gptc.Model` object).
|
||||||
|
@ -80,27 +79,15 @@ For information about `max_ngram_length`, see section "Ngrams."
|
||||||
Words or ngrams used less than `min_count` times throughout the input text are
|
Words or ngrams used less than `min_count` times throughout the input text are
|
||||||
excluded from the model.
|
excluded from the model.
|
||||||
|
|
||||||
The hash algorithm should be left as the default, which may change with a minor
|
### `gptc.Model.serialize()`
|
||||||
version update, but it can be changed by the application if needed. It is
|
|
||||||
stored in the model, so changing the algorithm does not affect compatibility.
|
|
||||||
The following algorithms are supported:
|
|
||||||
|
|
||||||
* `md5`
|
Returns a `bytes` representing the model.
|
||||||
* `sha1`
|
|
||||||
* `sha224`
|
|
||||||
* `sha256`
|
|
||||||
* `sha384`
|
|
||||||
* `sha512`
|
|
||||||
* `sha3_224`
|
|
||||||
* `sha3_384`
|
|
||||||
* `sha3_256`
|
|
||||||
* `sha3_512`
|
|
||||||
* `shake_128`
|
|
||||||
* `shake_256`
|
|
||||||
* `blake2b`
|
|
||||||
* `blake2s`
|
|
||||||
|
|
||||||
### `gptc.pack(directory, print_exceptions=False)`
|
### `gptc.deserialize(encoded_model)`
|
||||||
|
|
||||||
|
Deserialize a `Model` from a `bytes` returned by `Model.serialize()`.
|
||||||
|
|
||||||
|
### `gptc.pack(directory, print_exceptions=False)
|
||||||
|
|
||||||
Pack the model in `directory` and return a tuple of the format:
|
Pack the model in `directory` and return a tuple of the format:
|
||||||
|
|
||||||
|
@ -112,13 +99,6 @@ GPTC.
|
||||||
|
|
||||||
See `models/unpacked/` for an example of the format.
|
See `models/unpacked/` for an example of the format.
|
||||||
|
|
||||||
### `gptc.Classifier(model, max_ngram_length=1)`
|
|
||||||
|
|
||||||
`Classifier` objects are deprecated starting with GPTC 3.1.0, and will be
|
|
||||||
removed in 5.0.0. See [the README from
|
|
||||||
3.0.2](https://git.kj7rrv.com/kj7rrv/gptc/src/tag/v3.0.1/README.md) if you need
|
|
||||||
documentation.
|
|
||||||
|
|
||||||
## Ngrams
|
## Ngrams
|
||||||
|
|
||||||
GPTC optionally supports using ngrams to improve classification accuracy. They
|
GPTC optionally supports using ngrams to improve classification accuracy. They
|
||||||
|
@ -138,8 +118,7 @@ reduced to the one used when compiling the model.
|
||||||
|
|
||||||
## Model format
|
## Model format
|
||||||
|
|
||||||
This section explains the raw model format, which is how models are created and
|
This section explains the raw model format, which is how models are created and edited.
|
||||||
edited.
|
|
||||||
|
|
||||||
Raw models are formatted as a list of dicts. See below for the format:
|
Raw models are formatted as a list of dicts. See below for the format:
|
||||||
|
|
||||||
|
@ -150,10 +129,9 @@ Raw models are formatted as a list of dicts. See below for the format:
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
|
|
||||||
GPTC handles raw models as `list`s of `dict`s of `str`s (`List[Dict[str,
|
GPTC handles raw models as `list`s of `dict`s of `str`s (`List[Dict[str, str]]`), and they can be stored
|
||||||
str]]`), and they can be stored in any way these Python objects can be.
|
in any way these Python objects can be. However, it is recommended to store
|
||||||
However, it is recommended to store them in JSON format for compatibility with
|
them in JSON format for compatibility with the command-line tool.
|
||||||
the command-line tool.
|
|
||||||
|
|
||||||
## Emoji
|
## Emoji
|
||||||
|
|
||||||
|
|
|
@ -25,7 +25,7 @@ print(
|
||||||
round(
|
round(
|
||||||
1000000
|
1000000
|
||||||
* timeit.timeit(
|
* timeit.timeit(
|
||||||
"gptc.Model.compile(raw_model, max_ngram_length)",
|
"gptc.compile(raw_model, max_ngram_length)",
|
||||||
number=compile_iterations,
|
number=compile_iterations,
|
||||||
globals=globals(),
|
globals=globals(),
|
||||||
)
|
)
|
||||||
|
|
|
@ -2,11 +2,13 @@
|
||||||
|
|
||||||
"""General-Purpose Text Classifier"""
|
"""General-Purpose Text Classifier"""
|
||||||
|
|
||||||
from gptc.pack import pack
|
from gptc.compiler import compile as compile
|
||||||
from gptc.model import Model
|
from gptc.classifier import Classifier as Classifier
|
||||||
from gptc.tokenizer import normalize
|
from gptc.pack import pack as pack
|
||||||
|
from gptc.tokenizer import has_emoji as has_emoji
|
||||||
|
from gptc.model import Model as Model, deserialize as deserialize
|
||||||
from gptc.exceptions import (
|
from gptc.exceptions import (
|
||||||
GPTCError,
|
GPTCError as GPTCError,
|
||||||
ModelError,
|
ModelError as ModelError,
|
||||||
InvalidModelError,
|
InvalidModelError as InvalidModelError,
|
||||||
)
|
)
|
||||||
|
|
|
@ -17,9 +17,6 @@ def main() -> None:
|
||||||
"compile", help="compile a raw model"
|
"compile", help="compile a raw model"
|
||||||
)
|
)
|
||||||
compile_parser.add_argument("model", help="raw model to compile")
|
compile_parser.add_argument("model", help="raw model to compile")
|
||||||
compile_parser.add_argument(
|
|
||||||
"out", help="name of file to write compiled model to"
|
|
||||||
)
|
|
||||||
compile_parser.add_argument(
|
compile_parser.add_argument(
|
||||||
"--max-ngram-length",
|
"--max-ngram-length",
|
||||||
"-n",
|
"-n",
|
||||||
|
@ -44,12 +41,19 @@ def main() -> None:
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=1,
|
||||||
)
|
)
|
||||||
|
group = classify_parser.add_mutually_exclusive_group()
|
||||||
check_parser = subparsers.add_parser(
|
group.add_argument(
|
||||||
"check", help="check one word or ngram in model"
|
"-j",
|
||||||
|
"--json",
|
||||||
|
help="output confidence dict as JSON (default)",
|
||||||
|
action="store_true",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"-c",
|
||||||
|
"--category",
|
||||||
|
help="output most likely category or `None`",
|
||||||
|
action="store_true",
|
||||||
)
|
)
|
||||||
check_parser.add_argument("model", help="compiled model to use")
|
|
||||||
check_parser.add_argument("token", help="token or ngram to check")
|
|
||||||
|
|
||||||
pack_parser = subparsers.add_parser(
|
pack_parser = subparsers.add_parser(
|
||||||
"pack", help="pack a model from a directory"
|
"pack", help="pack a model from a directory"
|
||||||
|
@ -59,27 +63,29 @@ def main() -> None:
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if args.subparser_name == "compile":
|
if args.subparser_name == "compile":
|
||||||
with open(args.model, "r", encoding="utf-8") as input_file:
|
with open(args.model, "r") as f:
|
||||||
model = json.load(input_file)
|
model = json.load(f)
|
||||||
|
|
||||||
with open(args.out, "wb+") as output_file:
|
sys.stdout.buffer.write(
|
||||||
gptc.Model.compile(
|
gptc.compile(
|
||||||
model, args.max_ngram_length, args.min_count
|
model, args.max_ngram_length, args.min_count
|
||||||
).serialize(output_file)
|
).serialize()
|
||||||
|
)
|
||||||
elif args.subparser_name == "classify":
|
elif args.subparser_name == "classify":
|
||||||
with open(args.model, "rb") as model_file:
|
with open(args.model, "rb") as f:
|
||||||
model = gptc.Model.deserialize(model_file)
|
model = gptc.deserialize(f.read())
|
||||||
|
|
||||||
|
classifier = gptc.Classifier(model, args.max_ngram_length)
|
||||||
|
|
||||||
if sys.stdin.isatty():
|
if sys.stdin.isatty():
|
||||||
text = input("Text to analyse: ")
|
text = input("Text to analyse: ")
|
||||||
else:
|
else:
|
||||||
text = sys.stdin.read()
|
text = sys.stdin.read()
|
||||||
|
|
||||||
print(json.dumps(model.confidence(text, args.max_ngram_length)))
|
if args.category:
|
||||||
elif args.subparser_name == "check":
|
print(classifier.classify(text))
|
||||||
with open(args.model, "rb") as model_file:
|
else:
|
||||||
model = gptc.Model.deserialize(model_file)
|
print(json.dumps(classifier.confidence(text)))
|
||||||
print(json.dumps(model.get(args.token)))
|
|
||||||
else:
|
else:
|
||||||
print(json.dumps(gptc.pack(args.model, True)[0]))
|
print(json.dumps(gptc.pack(args.model, True)[0]))
|
||||||
|
|
||||||
|
|
94
gptc/classifier.py
Executable file
94
gptc/classifier.py
Executable file
|
@ -0,0 +1,94 @@
|
||||||
|
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||||
|
|
||||||
|
import gptc.tokenizer, gptc.compiler, gptc.exceptions, gptc.weighting
|
||||||
|
import warnings
|
||||||
|
from typing import Dict, Union, cast, List
|
||||||
|
|
||||||
|
|
||||||
|
class Classifier:
|
||||||
|
"""A text classifier.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
model : dict
|
||||||
|
A compiled GPTC model.
|
||||||
|
|
||||||
|
max_ngram_length : int
|
||||||
|
The maximum ngram length to use when tokenizing input. If this is
|
||||||
|
greater than the value used when the model was compiled, it will be
|
||||||
|
silently lowered to that value.
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
model : dict
|
||||||
|
The model used.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model: gptc.model.Model, max_ngram_length: int = 1):
|
||||||
|
self.model = model
|
||||||
|
model_ngrams = model.max_ngram_length
|
||||||
|
self.max_ngram_length = min(max_ngram_length, model_ngrams)
|
||||||
|
self.has_emoji = gptc.tokenizer.has_emoji and model.has_emoji
|
||||||
|
|
||||||
|
def confidence(self, text: str) -> Dict[str, float]:
|
||||||
|
"""Classify text with confidence.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
text : str
|
||||||
|
The text to classify
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dict
|
||||||
|
{category:probability, category:probability...} or {} if no words
|
||||||
|
matching any categories in the model were found
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
model = self.model.weights
|
||||||
|
|
||||||
|
tokens = gptc.tokenizer.tokenize(
|
||||||
|
text, self.max_ngram_length, self.has_emoji
|
||||||
|
)
|
||||||
|
numbered_probs: Dict[int, float] = {}
|
||||||
|
for word in tokens:
|
||||||
|
try:
|
||||||
|
weighted_numbers = gptc.weighting.weight(
|
||||||
|
[i / 65535 for i in cast(List[float], model[word])]
|
||||||
|
)
|
||||||
|
for category, value in enumerate(weighted_numbers):
|
||||||
|
try:
|
||||||
|
numbered_probs[category] += value
|
||||||
|
except KeyError:
|
||||||
|
numbered_probs[category] = value
|
||||||
|
except KeyError:
|
||||||
|
pass
|
||||||
|
total = sum(numbered_probs.values())
|
||||||
|
probs: Dict[str, float] = {
|
||||||
|
self.model.names[category]: value / total
|
||||||
|
for category, value in numbered_probs.items()
|
||||||
|
}
|
||||||
|
return probs
|
||||||
|
|
||||||
|
def classify(self, text: str) -> Union[str, None]:
|
||||||
|
"""Classify text.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
text : str
|
||||||
|
The text to classify
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
str or None
|
||||||
|
The most likely category, or None if no words matching any
|
||||||
|
category in the model were found.
|
||||||
|
|
||||||
|
"""
|
||||||
|
probs: Dict[str, float] = self.confidence(text)
|
||||||
|
try:
|
||||||
|
return sorted(probs.items(), key=lambda x: x[1])[-1][0]
|
||||||
|
except IndexError:
|
||||||
|
return None
|
86
gptc/compiler.py
Executable file
86
gptc/compiler.py
Executable file
|
@ -0,0 +1,86 @@
|
||||||
|
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||||
|
|
||||||
|
import gptc.tokenizer
|
||||||
|
import gptc.model
|
||||||
|
from typing import Iterable, Mapping, List, Dict, Union
|
||||||
|
|
||||||
|
|
||||||
|
def compile(
|
||||||
|
raw_model: Iterable[Mapping[str, str]],
|
||||||
|
max_ngram_length: int = 1,
|
||||||
|
min_count: int = 1,
|
||||||
|
) -> gptc.model.Model:
|
||||||
|
"""Compile a raw model.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
raw_model : list of dict
|
||||||
|
A raw GPTC model.
|
||||||
|
|
||||||
|
max_ngram_length : int
|
||||||
|
Maximum ngram lenght to compile with.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dict
|
||||||
|
A compiled GPTC model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
categories: Dict[str, List[int]] = {}
|
||||||
|
|
||||||
|
for portion in raw_model:
|
||||||
|
text = gptc.tokenizer.tokenize(portion["text"], max_ngram_length)
|
||||||
|
category = portion["category"]
|
||||||
|
try:
|
||||||
|
categories[category] += text
|
||||||
|
except KeyError:
|
||||||
|
categories[category] = text
|
||||||
|
|
||||||
|
word_counts: Dict[int, Dict[str, int]] = {}
|
||||||
|
|
||||||
|
names = []
|
||||||
|
|
||||||
|
for category, text in categories.items():
|
||||||
|
if not category in names:
|
||||||
|
names.append(category)
|
||||||
|
|
||||||
|
for word in text:
|
||||||
|
try:
|
||||||
|
counts_for_word = word_counts[word]
|
||||||
|
except KeyError:
|
||||||
|
counts_for_word = {}
|
||||||
|
word_counts[word] = counts_for_word
|
||||||
|
|
||||||
|
try:
|
||||||
|
word_counts[word][category] += 1
|
||||||
|
except KeyError:
|
||||||
|
word_counts[word][category] = 1
|
||||||
|
|
||||||
|
word_counts = {
|
||||||
|
word: counts
|
||||||
|
for word, counts in word_counts.items()
|
||||||
|
if sum(counts.values()) >= min_count
|
||||||
|
}
|
||||||
|
|
||||||
|
word_weights: Dict[int, Dict[str, float]] = {}
|
||||||
|
for word, values in word_counts.items():
|
||||||
|
for category, value in values.items():
|
||||||
|
try:
|
||||||
|
word_weights[word][category] = value / len(categories[category])
|
||||||
|
except KeyError:
|
||||||
|
word_weights[word] = {
|
||||||
|
category: value / len(categories[category])
|
||||||
|
}
|
||||||
|
|
||||||
|
model: Dict[int, List[int]] = {}
|
||||||
|
for word, weights in word_weights.items():
|
||||||
|
total = sum(weights.values())
|
||||||
|
new_weights: List[int] = []
|
||||||
|
for category in names:
|
||||||
|
new_weights.append(
|
||||||
|
round((weights.get(category, 0) / total) * 65535)
|
||||||
|
)
|
||||||
|
model[word] = new_weights
|
||||||
|
|
||||||
|
return gptc.model.Model(model, names, max_ngram_length)
|
333
gptc/model.py
333
gptc/model.py
|
@ -1,120 +1,9 @@
|
||||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||||
|
|
||||||
from typing import (
|
|
||||||
Iterable,
|
|
||||||
Mapping,
|
|
||||||
List,
|
|
||||||
Dict,
|
|
||||||
cast,
|
|
||||||
BinaryIO,
|
|
||||||
Tuple,
|
|
||||||
TypedDict,
|
|
||||||
)
|
|
||||||
import json
|
|
||||||
import gptc.tokenizer
|
import gptc.tokenizer
|
||||||
from gptc.exceptions import InvalidModelError
|
from gptc.exceptions import InvalidModelError
|
||||||
import gptc.weighting
|
from typing import Iterable, Mapping, List, Dict, Union
|
||||||
|
import json
|
||||||
def _count_words(
|
|
||||||
raw_model: Iterable[Mapping[str, str]],
|
|
||||||
max_ngram_length: int,
|
|
||||||
hash_algorithm: str,
|
|
||||||
) -> Tuple[Dict[int, Dict[str, int]], Dict[str, int], List[str]]:
|
|
||||||
word_counts: Dict[int, Dict[str, int]] = {}
|
|
||||||
category_lengths: Dict[str, int] = {}
|
|
||||||
names: List[str] = []
|
|
||||||
|
|
||||||
for portion in raw_model:
|
|
||||||
text = gptc.tokenizer.hash_list(
|
|
||||||
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
|
|
||||||
hash_algorithm,
|
|
||||||
)
|
|
||||||
category = portion["category"]
|
|
||||||
|
|
||||||
if not category in names:
|
|
||||||
names.append(category)
|
|
||||||
|
|
||||||
category_lengths[category] = category_lengths.get(category, 0) + len(
|
|
||||||
text
|
|
||||||
)
|
|
||||||
|
|
||||||
for word in text:
|
|
||||||
if word in word_counts:
|
|
||||||
try:
|
|
||||||
word_counts[word][category] += 1
|
|
||||||
except KeyError:
|
|
||||||
word_counts[word][category] = 1
|
|
||||||
else:
|
|
||||||
word_counts[word] = {category: 1}
|
|
||||||
|
|
||||||
return word_counts, category_lengths, names
|
|
||||||
|
|
||||||
|
|
||||||
def _get_weights(
|
|
||||||
min_count: int,
|
|
||||||
word_counts: Dict[int, Dict[str, int]],
|
|
||||||
category_lengths: Dict[str, int],
|
|
||||||
names: List[str],
|
|
||||||
) -> Dict[int, List[int]]:
|
|
||||||
model: Dict[int, List[int]] = {}
|
|
||||||
for word, counts in word_counts.items():
|
|
||||||
if sum(counts.values()) >= min_count:
|
|
||||||
weights = {
|
|
||||||
category: value / category_lengths[category]
|
|
||||||
for category, value in counts.items()
|
|
||||||
}
|
|
||||||
total = sum(weights.values())
|
|
||||||
new_weights: List[int] = []
|
|
||||||
for category in names:
|
|
||||||
new_weights.append(
|
|
||||||
round((weights.get(category, 0) / total) * 65535)
|
|
||||||
)
|
|
||||||
model[word] = new_weights
|
|
||||||
return model
|
|
||||||
|
|
||||||
class ExplanationEntry(TypedDict):
|
|
||||||
weight: float
|
|
||||||
probabilities: Dict[str, float]
|
|
||||||
count: int
|
|
||||||
|
|
||||||
|
|
||||||
Explanation = Dict[
|
|
||||||
str,
|
|
||||||
ExplanationEntry,
|
|
||||||
]
|
|
||||||
|
|
||||||
Log = List[Tuple[str, float, List[float]]]
|
|
||||||
|
|
||||||
|
|
||||||
class Confidences(dict[str, float]):
|
|
||||||
def __init__(self, probs: Dict[str, float]):
|
|
||||||
dict.__init__(self, probs)
|
|
||||||
|
|
||||||
|
|
||||||
class TransparentConfidences(Confidences):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
probs: Dict[str, float],
|
|
||||||
explanation: Explanation,
|
|
||||||
):
|
|
||||||
self.explanation = explanation
|
|
||||||
Confidences.__init__(self, probs)
|
|
||||||
|
|
||||||
|
|
||||||
def convert_log(log: Log, names: List[str]) -> Explanation:
|
|
||||||
explanation: Explanation = {}
|
|
||||||
for word2, weight, word_probs in log:
|
|
||||||
if word2 in explanation:
|
|
||||||
explanation[word2]["count"] += 1
|
|
||||||
else:
|
|
||||||
explanation[word2] = {
|
|
||||||
"weight": weight,
|
|
||||||
"probabilities": {
|
|
||||||
name: word_probs[index] for index, name in enumerate(names)
|
|
||||||
},
|
|
||||||
"count": 1,
|
|
||||||
}
|
|
||||||
return explanation
|
|
||||||
|
|
||||||
|
|
||||||
class Model:
|
class Model:
|
||||||
|
@ -123,200 +12,78 @@ class Model:
|
||||||
weights: Dict[int, List[int]],
|
weights: Dict[int, List[int]],
|
||||||
names: List[str],
|
names: List[str],
|
||||||
max_ngram_length: int,
|
max_ngram_length: int,
|
||||||
hash_algorithm: str,
|
has_emoji: Union[None, bool] = None,
|
||||||
):
|
):
|
||||||
self.weights = weights
|
self.weights = weights
|
||||||
self.names = names
|
self.names = names
|
||||||
self.max_ngram_length = max_ngram_length
|
self.max_ngram_length = max_ngram_length
|
||||||
self.hash_algorithm = hash_algorithm
|
self.has_emoji = (
|
||||||
|
gptc.tokenizer.has_emoji if has_emoji is None else has_emoji
|
||||||
def confidence(
|
|
||||||
self, text: str, max_ngram_length: int, transparent: bool = False
|
|
||||||
) -> Confidences:
|
|
||||||
"""Classify text with confidence.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
text : str
|
|
||||||
The text to classify
|
|
||||||
|
|
||||||
max_ngram_length : int
|
|
||||||
The maximum ngram length to use in classifying
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
dict
|
|
||||||
{category:probability, category:probability...} or {} if no words
|
|
||||||
matching any categories in the model were found
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
model = self.weights
|
|
||||||
max_ngram_length = min(self.max_ngram_length, max_ngram_length)
|
|
||||||
|
|
||||||
raw_tokens = gptc.tokenizer.tokenize(
|
|
||||||
text, min(max_ngram_length, self.max_ngram_length)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
tokens = gptc.tokenizer.hash_list(
|
def serialize(self) -> bytes:
|
||||||
raw_tokens,
|
out = b"GPTC model v4\n"
|
||||||
self.hash_algorithm,
|
out += (
|
||||||
)
|
|
||||||
|
|
||||||
if transparent:
|
|
||||||
token_map = {tokens[i]: raw_tokens[i] for i in range(len(tokens))}
|
|
||||||
log: Log = []
|
|
||||||
|
|
||||||
numbered_probs: Dict[int, float] = {}
|
|
||||||
|
|
||||||
for word in tokens:
|
|
||||||
try:
|
|
||||||
unweighted_numbers = [
|
|
||||||
i / 65535 for i in cast(List[float], model[word])
|
|
||||||
]
|
|
||||||
|
|
||||||
weight, weighted_numbers = gptc.weighting.weight(
|
|
||||||
unweighted_numbers
|
|
||||||
)
|
|
||||||
|
|
||||||
if transparent:
|
|
||||||
log.append(
|
|
||||||
(
|
|
||||||
token_map[word],
|
|
||||||
weight,
|
|
||||||
unweighted_numbers,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
for category, value in enumerate(weighted_numbers):
|
|
||||||
try:
|
|
||||||
numbered_probs[category] += value
|
|
||||||
except KeyError:
|
|
||||||
numbered_probs[category] = value
|
|
||||||
except KeyError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
total = sum(numbered_probs.values())
|
|
||||||
probs: Dict[str, float] = {
|
|
||||||
self.names[category]: value / total
|
|
||||||
for category, value in numbered_probs.items()
|
|
||||||
}
|
|
||||||
|
|
||||||
if transparent:
|
|
||||||
explanation = convert_log(log, self.names)
|
|
||||||
return TransparentConfidences(probs, explanation)
|
|
||||||
|
|
||||||
return Confidences(probs)
|
|
||||||
|
|
||||||
def get(self, token: str) -> Dict[str, float]:
|
|
||||||
try:
|
|
||||||
weights = self.weights[
|
|
||||||
gptc.tokenizer.hash_single(
|
|
||||||
gptc.tokenizer.normalize(token), self.hash_algorithm
|
|
||||||
)
|
|
||||||
]
|
|
||||||
except KeyError:
|
|
||||||
return {}
|
|
||||||
return {
|
|
||||||
category: weights[index] / 65535
|
|
||||||
for index, category in enumerate(self.names)
|
|
||||||
}
|
|
||||||
|
|
||||||
def serialize(self, file: BinaryIO) -> None:
|
|
||||||
file.write(b"GPTC model v6\n")
|
|
||||||
file.write(
|
|
||||||
json.dumps(
|
json.dumps(
|
||||||
{
|
{
|
||||||
"names": self.names,
|
"names": self.names,
|
||||||
"max_ngram_length": self.max_ngram_length,
|
"max_ngram_length": self.max_ngram_length,
|
||||||
"hash_algorithm": self.hash_algorithm,
|
"has_emoji": self.has_emoji,
|
||||||
}
|
}
|
||||||
).encode("utf-8")
|
).encode("utf-8")
|
||||||
+ b"\n"
|
+ b"\n"
|
||||||
)
|
)
|
||||||
for word, weights in self.weights.items():
|
for word, weights in self.weights.items():
|
||||||
file.write(
|
out += word.to_bytes(6, "big") + b"".join(
|
||||||
word.to_bytes(6, "big")
|
[weight.to_bytes(2, "big") for weight in weights]
|
||||||
+ b"".join([weight.to_bytes(2, "big") for weight in weights])
|
|
||||||
)
|
)
|
||||||
|
return out
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def compile(
|
|
||||||
raw_model: Iterable[Mapping[str, str]],
|
|
||||||
max_ngram_length: int = 1,
|
|
||||||
min_count: int = 1,
|
|
||||||
hash_algorithm: str = "sha256",
|
|
||||||
) -> 'Model':
|
|
||||||
"""Compile a raw model.
|
|
||||||
|
|
||||||
Parameters
|
def deserialize(encoded_model: bytes) -> Model:
|
||||||
----------
|
try:
|
||||||
raw_model : list of dict
|
prefix, config_json, encoded_weights = encoded_model.split(b"\n", 2)
|
||||||
A raw GPTC model.
|
except ValueError:
|
||||||
|
raise InvalidModelError()
|
||||||
|
|
||||||
max_ngram_length : int
|
if prefix != b"GPTC model v4":
|
||||||
Maximum ngram lenght to compile with.
|
raise InvalidModelError()
|
||||||
|
|
||||||
Returns
|
try:
|
||||||
-------
|
config = json.loads(config_json.decode("utf-8"))
|
||||||
dict
|
except (UnicodeDecodeError, json.JSONDecodeError):
|
||||||
A compiled GPTC model.
|
raise InvalidModelError()
|
||||||
|
|
||||||
"""
|
try:
|
||||||
word_counts, category_lengths, names = _count_words(
|
names = config["names"]
|
||||||
raw_model, max_ngram_length, hash_algorithm
|
max_ngram_length = config["max_ngram_length"]
|
||||||
)
|
has_emoji = config["has_emoji"]
|
||||||
model = _get_weights(min_count, word_counts, category_lengths, names)
|
except KeyError:
|
||||||
return Model(model, names, max_ngram_length, hash_algorithm)
|
raise InvalidModelError()
|
||||||
|
|
||||||
@staticmethod
|
if not (
|
||||||
def deserialize(encoded_model: BinaryIO) -> "Model":
|
isinstance(names, list)
|
||||||
prefix = encoded_model.read(14)
|
and isinstance(max_ngram_length, int)
|
||||||
if prefix != b"GPTC model v6\n":
|
and isinstance(has_emoji, bool)
|
||||||
raise InvalidModelError()
|
) or not all([isinstance(name, str) for name in names]):
|
||||||
|
raise InvalidModelError()
|
||||||
|
|
||||||
config_json = b""
|
weight_code_length = 6 + 2 * len(names)
|
||||||
while True:
|
|
||||||
byte = encoded_model.read(1)
|
|
||||||
if byte == b"\n":
|
|
||||||
break
|
|
||||||
|
|
||||||
if byte == b"":
|
if len(encoded_weights) % weight_code_length != 0:
|
||||||
raise InvalidModelError()
|
raise InvalidModelError()
|
||||||
|
|
||||||
config_json += byte
|
weight_codes = [
|
||||||
|
encoded_weights[x : x + weight_code_length]
|
||||||
|
for x in range(0, len(encoded_weights), weight_code_length)
|
||||||
|
]
|
||||||
|
|
||||||
try:
|
weights = {
|
||||||
config = json.loads(config_json.decode("utf-8"))
|
int.from_bytes(code[:6], "big"): [
|
||||||
except (UnicodeDecodeError, json.JSONDecodeError) as exc:
|
int.from_bytes(value, "big")
|
||||||
raise InvalidModelError() from exc
|
for value in [code[x : x + 2] for x in range(6, len(code), 2)]
|
||||||
|
]
|
||||||
|
for code in weight_codes
|
||||||
|
}
|
||||||
|
|
||||||
try:
|
return Model(weights, names, max_ngram_length, has_emoji)
|
||||||
names = config["names"]
|
|
||||||
max_ngram_length = config["max_ngram_length"]
|
|
||||||
hash_algorithm = config["hash_algorithm"]
|
|
||||||
except KeyError as exc:
|
|
||||||
raise InvalidModelError() from exc
|
|
||||||
|
|
||||||
if not (
|
|
||||||
isinstance(names, list) and isinstance(max_ngram_length, int)
|
|
||||||
) or not all(isinstance(name, str) for name in names):
|
|
||||||
raise InvalidModelError()
|
|
||||||
|
|
||||||
weight_code_length = 6 + 2 * len(names)
|
|
||||||
|
|
||||||
weights: Dict[int, List[int]] = {}
|
|
||||||
|
|
||||||
while True:
|
|
||||||
code = encoded_model.read(weight_code_length)
|
|
||||||
if not code:
|
|
||||||
break
|
|
||||||
if len(code) != weight_code_length:
|
|
||||||
raise InvalidModelError()
|
|
||||||
|
|
||||||
weights[int.from_bytes(code[:6], "big")] = [
|
|
||||||
int.from_bytes(value, "big")
|
|
||||||
for value in [code[x : x + 2] for x in range(6, len(code), 2)]
|
|
||||||
]
|
|
||||||
|
|
||||||
return Model(weights, names, max_ngram_length, hash_algorithm)
|
|
||||||
|
|
20
gptc/pack.py
20
gptc/pack.py
|
@ -7,7 +7,7 @@ from typing import List, Dict, Tuple
|
||||||
|
|
||||||
def pack(
|
def pack(
|
||||||
directory: str, print_exceptions: bool = False
|
directory: str, print_exceptions: bool = False
|
||||||
) -> Tuple[List[Dict[str, str]], List[Tuple[OSError]]]:
|
) -> Tuple[List[Dict[str, str]], List[Tuple[Exception]]]:
|
||||||
paths = os.listdir(directory)
|
paths = os.listdir(directory)
|
||||||
texts: Dict[str, List[str]] = {}
|
texts: Dict[str, List[str]] = {}
|
||||||
exceptions = []
|
exceptions = []
|
||||||
|
@ -17,18 +17,16 @@ def pack(
|
||||||
try:
|
try:
|
||||||
for file in os.listdir(os.path.join(directory, path)):
|
for file in os.listdir(os.path.join(directory, path)):
|
||||||
try:
|
try:
|
||||||
with open(
|
with open(os.path.join(directory, path, file)) as f:
|
||||||
os.path.join(directory, path, file), encoding="utf-8"
|
texts[path].append(f.read())
|
||||||
) as input_file:
|
except Exception as e:
|
||||||
texts[path].append(input_file.read())
|
exceptions.append((e,))
|
||||||
except OSError as error:
|
|
||||||
exceptions.append((error,))
|
|
||||||
if print_exceptions:
|
if print_exceptions:
|
||||||
print(error, file=sys.stderr)
|
print(e, file=sys.stderr)
|
||||||
except OSError as error:
|
except Exception as e:
|
||||||
exceptions.append((error,))
|
exceptions.append((e,))
|
||||||
if print_exceptions:
|
if print_exceptions:
|
||||||
print(error, file=sys.stderr)
|
print(e, file=sys.stderr)
|
||||||
|
|
||||||
raw_model = []
|
raw_model = []
|
||||||
|
|
||||||
|
|
|
@ -1,33 +1,40 @@
|
||||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||||
|
|
||||||
import unicodedata
|
from typing import List, Union
|
||||||
from typing import List, cast
|
|
||||||
import hashlib
|
import hashlib
|
||||||
import emoji
|
import base64
|
||||||
|
|
||||||
|
try:
|
||||||
|
import emoji
|
||||||
|
|
||||||
|
has_emoji = True
|
||||||
|
except ImportError:
|
||||||
|
has_emoji = False
|
||||||
|
|
||||||
|
|
||||||
def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
|
def tokenize(
|
||||||
text = unicodedata.normalize("NFKD", text).casefold()
|
text: str, max_ngram_length: int = 1, use_emoji: bool = True
|
||||||
parts = []
|
) -> List[int]:
|
||||||
highest_end = 0
|
"""Convert a string to a list of lemmas."""
|
||||||
for emoji_part in emoji.emoji_list(text):
|
converted_text: Union[str, List[str]] = text.lower()
|
||||||
parts += list(text[highest_end : emoji_part["match_start"]])
|
|
||||||
parts.append(emoji_part["emoji"])
|
if has_emoji and use_emoji:
|
||||||
highest_end = emoji_part["match_end"]
|
text = text.lower()
|
||||||
parts += list(text[highest_end:])
|
parts = []
|
||||||
converted_text = [part for part in parts if part]
|
highest_end = 0
|
||||||
|
for emoji_part in emoji.emoji_list(text):
|
||||||
|
parts += list(text[highest_end : emoji_part["match_start"]])
|
||||||
|
parts.append(emoji_part["emoji"])
|
||||||
|
highest_end = emoji_part["match_end"]
|
||||||
|
parts += list(text[highest_end:])
|
||||||
|
converted_text = [part for part in parts if part]
|
||||||
|
|
||||||
tokens = [""]
|
tokens = [""]
|
||||||
|
|
||||||
for char in converted_text:
|
for char in converted_text:
|
||||||
if (
|
if char.isalpha() or char == "'":
|
||||||
char.isalpha()
|
|
||||||
or char.isnumeric()
|
|
||||||
or char == "'"
|
|
||||||
or (char in ",." and (" " + tokens[-1])[-1].isnumeric())
|
|
||||||
):
|
|
||||||
tokens[-1] += char
|
tokens[-1] += char
|
||||||
elif emoji.is_emoji(char):
|
elif has_emoji and emoji.is_emoji(char):
|
||||||
tokens.append(char)
|
tokens.append(char)
|
||||||
tokens.append("")
|
tokens.append("")
|
||||||
elif tokens[-1] != "":
|
elif tokens[-1] != "":
|
||||||
|
@ -36,51 +43,16 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
|
||||||
tokens = [string for string in tokens if string]
|
tokens = [string for string in tokens if string]
|
||||||
|
|
||||||
if max_ngram_length == 1:
|
if max_ngram_length == 1:
|
||||||
return tokens
|
ngrams = tokens
|
||||||
|
else:
|
||||||
|
ngrams = []
|
||||||
|
for ngram_length in range(1, max_ngram_length + 1):
|
||||||
|
for index in range(len(tokens) + 1 - ngram_length):
|
||||||
|
ngrams.append(" ".join(tokens[index : index + ngram_length]))
|
||||||
|
|
||||||
ngrams = []
|
return [
|
||||||
for ngram_length in range(1, max_ngram_length + 1):
|
int.from_bytes(
|
||||||
for index in range(len(tokens) + 1 - ngram_length):
|
hashlib.sha256(token.encode("utf-8")).digest()[:6], "big"
|
||||||
ngrams.append(" ".join(tokens[index : index + ngram_length]))
|
)
|
||||||
return ngrams
|
for token in ngrams
|
||||||
|
]
|
||||||
|
|
||||||
def _hash_single(token: str, hash_function: type) -> int:
|
|
||||||
return int.from_bytes(
|
|
||||||
hash_function(token.encode("utf-8")).digest()[:6], "big"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def _get_hash_function(hash_algorithm: str) -> type:
|
|
||||||
if hash_algorithm in {
|
|
||||||
"sha224",
|
|
||||||
"md5",
|
|
||||||
"sha512",
|
|
||||||
"sha3_256",
|
|
||||||
"blake2s",
|
|
||||||
"sha3_224",
|
|
||||||
"sha1",
|
|
||||||
"sha256",
|
|
||||||
"sha384",
|
|
||||||
"shake_256",
|
|
||||||
"blake2b",
|
|
||||||
"sha3_512",
|
|
||||||
"shake_128",
|
|
||||||
"sha3_384",
|
|
||||||
}:
|
|
||||||
return cast(type, getattr(hashlib, hash_algorithm))
|
|
||||||
|
|
||||||
raise ValueError("not a valid hash function: " + hash_algorithm)
|
|
||||||
|
|
||||||
|
|
||||||
def hash_single(token: str, hash_algorithm: str) -> int:
|
|
||||||
return _hash_single(token, _get_hash_function(hash_algorithm))
|
|
||||||
|
|
||||||
|
|
||||||
def hash_list(tokens: List[str], hash_algorithm: str) -> List[int]:
|
|
||||||
hash_function = _get_hash_function(hash_algorithm)
|
|
||||||
return [_hash_single(token, hash_function) for token in tokens]
|
|
||||||
|
|
||||||
|
|
||||||
def normalize(text: str) -> str:
|
|
||||||
return " ".join(tokenize(text, 1))
|
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
# SPDX-License-Identifier: GPL-3.0-or-later
|
||||||
|
|
||||||
import math
|
import math
|
||||||
from typing import Sequence, Tuple, List
|
from typing import Sequence, Union, Tuple, List
|
||||||
|
|
||||||
|
|
||||||
def _mean(numbers: Sequence[float]) -> float:
|
def _mean(numbers: Sequence[float]) -> float:
|
||||||
|
@ -39,8 +39,8 @@ def _standard_deviation(numbers: Sequence[float]) -> float:
|
||||||
return math.sqrt(_mean(squared_deviations))
|
return math.sqrt(_mean(squared_deviations))
|
||||||
|
|
||||||
|
|
||||||
def weight(numbers: Sequence[float]) -> Tuple[float, List[float]]:
|
def weight(numbers: Sequence[float]) -> List[float]:
|
||||||
standard_deviation = _standard_deviation(numbers)
|
standard_deviation = _standard_deviation(numbers)
|
||||||
weight_assigned = standard_deviation * 2
|
weight = standard_deviation * 2
|
||||||
weighted_numbers = [i * weight_assigned for i in numbers]
|
weighted_numbers = [i * weight for i in numbers]
|
||||||
return weight_assigned, weighted_numbers
|
return weighted_numbers
|
||||||
|
|
Binary file not shown.
16
profiler.py
16
profiler.py
|
@ -1,16 +0,0 @@
|
||||||
# SPDX-License-Identifier: GPL-3.0-or-later
|
|
||||||
|
|
||||||
import cProfile
|
|
||||||
import gptc
|
|
||||||
import json
|
|
||||||
import sys
|
|
||||||
|
|
||||||
max_ngram_length = 10
|
|
||||||
|
|
||||||
with open("models/raw.json") as f:
|
|
||||||
raw_model = json.load(f)
|
|
||||||
|
|
||||||
with open("models/benchmark_text.txt") as f:
|
|
||||||
text = f.read()
|
|
||||||
|
|
||||||
cProfile.run("gptc.Model.compile(raw_model, max_ngram_length)")
|
|
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
[project]
|
[project]
|
||||||
name = "gptc"
|
name = "gptc"
|
||||||
version = "4.0.1"
|
version = "3.0.0"
|
||||||
description = "General-purpose text classifier"
|
description = "General-purpose text classifier"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}]
|
authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}]
|
||||||
|
|
Loading…
Reference in New Issue
Block a user