Compare commits
No commits in common. "b4766cb61344e48ed379d1c827c7aabd1b3f0c99" and "7ecb7dd90ac2cd5e9f3c63db0886eab768cebfee" have entirely different histories.
b4766cb613
...
7ecb7dd90a
|
@ -5,6 +5,7 @@
|
|||
from gptc.compiler import compile as compile
|
||||
from gptc.classifier import Classifier as Classifier
|
||||
from gptc.pack import pack as pack
|
||||
from gptc.tokenizer import has_emoji as has_emoji
|
||||
from gptc.model import Model as Model, deserialize as deserialize
|
||||
from gptc.exceptions import (
|
||||
GPTCError as GPTCError,
|
||||
|
|
|
@ -29,6 +29,7 @@ class Classifier:
|
|||
self.model = model
|
||||
model_ngrams = model.max_ngram_length
|
||||
self.max_ngram_length = min(max_ngram_length, model_ngrams)
|
||||
self.has_emoji = gptc.tokenizer.has_emoji and model.has_emoji
|
||||
|
||||
def confidence(self, text: str) -> Dict[str, float]:
|
||||
"""Classify text with confidence.
|
||||
|
@ -48,7 +49,9 @@ class Classifier:
|
|||
|
||||
model = self.model.weights
|
||||
|
||||
tokens = gptc.tokenizer.tokenize(text, self.max_ngram_length)
|
||||
tokens = gptc.tokenizer.tokenize(
|
||||
text, self.max_ngram_length, self.has_emoji
|
||||
)
|
||||
numbered_probs: Dict[int, float] = {}
|
||||
for word in tokens:
|
||||
try:
|
||||
|
|
|
@ -12,10 +12,14 @@ class Model:
|
|||
weights: Dict[int, List[int]],
|
||||
names: List[str],
|
||||
max_ngram_length: int,
|
||||
has_emoji: Union[None, bool] = None,
|
||||
):
|
||||
self.weights = weights
|
||||
self.names = names
|
||||
self.max_ngram_length = max_ngram_length
|
||||
self.has_emoji = (
|
||||
gptc.tokenizer.has_emoji if has_emoji is None else has_emoji
|
||||
)
|
||||
|
||||
def serialize(self) -> bytes:
|
||||
out = b"GPTC model v4\n"
|
||||
|
@ -24,16 +28,7 @@ class Model:
|
|||
{
|
||||
"names": self.names,
|
||||
"max_ngram_length": self.max_ngram_length,
|
||||
"has_emoji": True,
|
||||
# Due to an oversight in development, version 3.0.0 still
|
||||
# had the code used to make emoji support optional, even
|
||||
# though the `emoji` library was made a hard dependency.
|
||||
# Part of this code checked whether or not the model
|
||||
# supports emoji; deserialization would not work in 3.0.0
|
||||
# if the model was compiled without this field. Emoji are
|
||||
# always supported with 3.0.0 and newer when GPTC has been
|
||||
# installed correctly, so this value should always be True.
|
||||
# Related: #11
|
||||
"has_emoji": self.has_emoji,
|
||||
}
|
||||
).encode("utf-8")
|
||||
+ b"\n"
|
||||
|
@ -62,11 +57,14 @@ def deserialize(encoded_model: bytes) -> Model:
|
|||
try:
|
||||
names = config["names"]
|
||||
max_ngram_length = config["max_ngram_length"]
|
||||
has_emoji = config["has_emoji"]
|
||||
except KeyError:
|
||||
raise InvalidModelError()
|
||||
|
||||
if not (
|
||||
isinstance(names, list) and isinstance(max_ngram_length, int)
|
||||
isinstance(names, list)
|
||||
and isinstance(max_ngram_length, int)
|
||||
and isinstance(has_emoji, bool)
|
||||
) or not all([isinstance(name, str) for name in names]):
|
||||
raise InvalidModelError()
|
||||
|
||||
|
@ -88,4 +86,4 @@ def deserialize(encoded_model: bytes) -> Model:
|
|||
for code in weight_codes
|
||||
}
|
||||
|
||||
return Model(weights, names, max_ngram_length)
|
||||
return Model(weights, names, max_ngram_length, has_emoji)
|
||||
|
|
|
@ -3,10 +3,22 @@
|
|||
from typing import List, Union
|
||||
import hashlib
|
||||
import base64
|
||||
|
||||
try:
|
||||
import emoji
|
||||
|
||||
has_emoji = True
|
||||
except ImportError:
|
||||
has_emoji = False
|
||||
|
||||
def tokenize(text: str, max_ngram_length: int = 1) -> List[int]:
|
||||
|
||||
def tokenize(
|
||||
text: str, max_ngram_length: int = 1, use_emoji: bool = True
|
||||
) -> List[int]:
|
||||
"""Convert a string to a list of lemmas."""
|
||||
converted_text: Union[str, List[str]] = text.lower()
|
||||
|
||||
if has_emoji and use_emoji:
|
||||
text = text.lower()
|
||||
parts = []
|
||||
highest_end = 0
|
||||
|
@ -22,7 +34,7 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[int]:
|
|||
for char in converted_text:
|
||||
if char.isalpha() or char == "'":
|
||||
tokens[-1] += char
|
||||
elif emoji.is_emoji(char):
|
||||
elif has_emoji and emoji.is_emoji(char):
|
||||
tokens.append(char)
|
||||
tokens.append("")
|
||||
elif tokens[-1] != "":
|
||||
|
|
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|||
|
||||
[project]
|
||||
name = "gptc"
|
||||
version = "3.0.1"
|
||||
version = "3.0.0"
|
||||
description = "General-purpose text classifier"
|
||||
readme = "README.md"
|
||||
authors = [{ name = "Samuel Sloniker", email = "sam@kj7rrv.com"}]
|
||||
|
|
Loading…
Reference in New Issue
Block a user