Compare commits

..

No commits in common. "97c4eef086564655f22716318a2f5d704afd89f9" and "2c3fc77ba6465d42568a0f5788a9931d7045f955" have entirely different histories.

10 changed files with 213 additions and 238 deletions

View File

@ -48,7 +48,7 @@ example of the format. Any exceptions will be printed to stderr.
Write binary data representing the model to `file`.
### `Model.deserialize(encoded_model)`
### `gptc.deserialize(encoded_model)`
Deserialize a `Model` from a file containing data from `Model.serialize()`.
@ -70,7 +70,7 @@ Return a confidence dict for the given token or ngram. This function is very
similar to `Model.confidence()`, except it treats the input as a single token
or ngram.
### `Model.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
### `gptc.compile(raw_model, max_ngram_length=1, min_count=1, hash_algorithm="sha256")`
Compile a raw model (as a list, not JSON) and return the compiled model (as a
`gptc.Model` object).

View File

@ -25,7 +25,7 @@ print(
round(
1000000
* timeit.timeit(
"gptc.Model.compile(raw_model, max_ngram_length)",
"gptc.compile(raw_model, max_ngram_length)",
number=compile_iterations,
globals=globals(),
)

View File

@ -2,11 +2,12 @@
"""General-Purpose Text Classifier"""
from gptc.pack import pack
from gptc.model import Model
from gptc.tokenizer import normalize
from gptc.compiler import compile as compile
from gptc.pack import pack as pack
from gptc.model import Model as Model, deserialize as deserialize
from gptc.tokenizer import normalize as normalize
from gptc.exceptions import (
GPTCError,
ModelError,
InvalidModelError,
GPTCError as GPTCError,
ModelError as ModelError,
InvalidModelError as InvalidModelError,
)

View File

@ -59,16 +59,16 @@ def main() -> None:
args = parser.parse_args()
if args.subparser_name == "compile":
with open(args.model, "r", encoding="utf-8") as input_file:
model = json.load(input_file)
with open(args.model, "r") as f:
model = json.load(f)
with open(args.out, "wb+") as output_file:
gptc.Model.compile(
with open(args.out, "wb+") as f:
gptc.compile(
model, args.max_ngram_length, args.min_count
).serialize(output_file)
).serialize(f)
elif args.subparser_name == "classify":
with open(args.model, "rb") as model_file:
model = gptc.Model.deserialize(model_file)
with open(args.model, "rb") as f:
model = gptc.deserialize(f)
if sys.stdin.isatty():
text = input("Text to analyse: ")
@ -77,8 +77,8 @@ def main() -> None:
print(json.dumps(model.confidence(text, args.max_ngram_length)))
elif args.subparser_name == "check":
with open(args.model, "rb") as model_file:
model = gptc.Model.deserialize(model_file)
with open(args.model, "rb") as f:
model = gptc.deserialize(f)
print(json.dumps(model.get(args.token)))
else:
print(json.dumps(gptc.pack(args.model, True)[0]))

92
gptc/compiler.py Executable file
View File

@ -0,0 +1,92 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import gptc.tokenizer
import gptc.model
from typing import Iterable, Mapping, List, Dict, Union, Tuple
def _count_words(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int,
hash_algorithm: str,
) -> Tuple[Dict[int, Dict[str, int]], Dict[str, int], List[str]]:
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
return word_counts, category_lengths, names
def _get_weights(
min_count: int,
word_counts: Dict[int, Dict[str, int]],
category_lengths: Dict[str, int],
names: List[str],
) -> Dict[int, List[int]]:
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return model
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> gptc.model.Model:
"""Compile a raw model.
Parameters
----------
raw_model : list of dict
A raw GPTC model.
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
"""
word_counts, category_lengths, names = _count_words(
raw_model, max_ngram_length, hash_algorithm
)
model = _get_weights(min_count, word_counts, category_lengths, names)
return gptc.model.Model(model, names, max_ngram_length, hash_algorithm)

View File

@ -1,120 +1,11 @@
# SPDX-License-Identifier: GPL-3.0-or-later
from typing import (
Iterable,
Mapping,
List,
Dict,
cast,
BinaryIO,
Tuple,
TypedDict,
)
import json
import gptc.tokenizer
from gptc.exceptions import InvalidModelError
import gptc.weighting
def _count_words(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int,
hash_algorithm: str,
) -> Tuple[Dict[int, Dict[str, int]], Dict[str, int], List[str]]:
word_counts: Dict[int, Dict[str, int]] = {}
category_lengths: Dict[str, int] = {}
names: List[str] = []
for portion in raw_model:
text = gptc.tokenizer.hash_list(
gptc.tokenizer.tokenize(portion["text"], max_ngram_length),
hash_algorithm,
)
category = portion["category"]
if not category in names:
names.append(category)
category_lengths[category] = category_lengths.get(category, 0) + len(
text
)
for word in text:
if word in word_counts:
try:
word_counts[word][category] += 1
except KeyError:
word_counts[word][category] = 1
else:
word_counts[word] = {category: 1}
return word_counts, category_lengths, names
def _get_weights(
min_count: int,
word_counts: Dict[int, Dict[str, int]],
category_lengths: Dict[str, int],
names: List[str],
) -> Dict[int, List[int]]:
model: Dict[int, List[int]] = {}
for word, counts in word_counts.items():
if sum(counts.values()) >= min_count:
weights = {
category: value / category_lengths[category]
for category, value in counts.items()
}
total = sum(weights.values())
new_weights: List[int] = []
for category in names:
new_weights.append(
round((weights.get(category, 0) / total) * 65535)
)
model[word] = new_weights
return model
class ExplanationEntry(TypedDict):
weight: float
probabilities: Dict[str, float]
count: int
Explanation = Dict[
str,
ExplanationEntry,
]
Log = List[Tuple[str, float, List[float]]]
class Confidences(dict[str, float]):
def __init__(self, probs: Dict[str, float]):
dict.__init__(self, probs)
class TransparentConfidences(Confidences):
def __init__(
self,
probs: Dict[str, float],
explanation: Explanation,
):
self.explanation = explanation
Confidences.__init__(self, probs)
def convert_log(log: Log, names: List[str]) -> Explanation:
explanation: Explanation = {}
for word2, weight, word_probs in log:
if word2 in explanation:
explanation[word2]["count"] += 1
else:
explanation[word2] = {
"weight": weight,
"probabilities": {
name: word_probs[index] for index, name in enumerate(names)
},
"count": 1,
}
return explanation
from typing import Iterable, Mapping, List, Dict, Union, cast, BinaryIO
import json
import collections
class Model:
@ -132,7 +23,7 @@ class Model:
def confidence(
self, text: str, max_ngram_length: int, transparent: bool = False
) -> Confidences:
) -> Dict[str, float]:
"""Classify text with confidence.
Parameters
@ -158,14 +49,14 @@ class Model:
text, min(max_ngram_length, self.max_ngram_length)
)
tokens = gptc.tokenizer.hash_list(
tokens = gptc.tokenizer.hash(
raw_tokens,
self.hash_algorithm,
)
if transparent:
token_map = {tokens[i]: raw_tokens[i] for i in range(len(tokens))}
log: Log = []
log = []
numbered_probs: Dict[int, float] = {}
@ -180,13 +71,7 @@ class Model:
)
if transparent:
log.append(
(
token_map[word],
weight,
unweighted_numbers,
)
)
log.append([token_map[word], weight, unweighted_numbers])
for category, value in enumerate(weighted_numbers):
try:
@ -203,10 +88,25 @@ class Model:
}
if transparent:
explanation = convert_log(log, self.names)
return TransparentConfidences(probs, explanation)
explanation = {}
for word, weight, word_probs in log:
if word in explanation:
explanation[word]["count"] += 1
else:
explanation[word] = {
"weight": weight,
"probabilities": {
name: word_probs[index]
for index, name in enumerate(self.names)
},
"count": 1,
}
return Confidences(probs)
return TransparentConfidences(
probs, explanation, self, text, max_ngram_length
)
else:
return Confidences(probs, self, text, max_ngram_length)
def get(self, token: str) -> Dict[str, float]:
try:
@ -240,83 +140,67 @@ class Model:
+ b"".join([weight.to_bytes(2, "big") for weight in weights])
)
@staticmethod
def compile(
raw_model: Iterable[Mapping[str, str]],
max_ngram_length: int = 1,
min_count: int = 1,
hash_algorithm: str = "sha256",
) -> 'Model':
"""Compile a raw model.
Parameters
----------
raw_model : list of dict
A raw GPTC model.
class Confidences(collections.UserDict):
def __init__(self, probs, model, text, max_ngram_length):
collections.UserDict.__init__(self, probs)
self.model = model
self.text = text
self.max_ngram_length = max_ngram_length
max_ngram_length : int
Maximum ngram lenght to compile with.
Returns
-------
dict
A compiled GPTC model.
class TransparentConfidences(Confidences):
def __init__(self, probs, explanation, model, text, max_ngram_length):
Confidences.__init__(self, probs, model, text, max_ngram_length)
self.explanation = explanation
"""
word_counts, category_lengths, names = _count_words(
raw_model, max_ngram_length, hash_algorithm
)
model = _get_weights(min_count, word_counts, category_lengths, names)
return Model(model, names, max_ngram_length, hash_algorithm)
@staticmethod
def deserialize(encoded_model: BinaryIO) -> "Model":
prefix = encoded_model.read(14)
if prefix != b"GPTC model v6\n":
def deserialize(encoded_model: BinaryIO) -> Model:
prefix = encoded_model.read(14)
if prefix != b"GPTC model v6\n":
raise InvalidModelError()
config_json = b""
while True:
byte = encoded_model.read(1)
if byte == b"\n":
break
elif byte == b"":
raise InvalidModelError()
config_json = b""
while True:
byte = encoded_model.read(1)
if byte == b"\n":
break
if byte == b"":
raise InvalidModelError()
else:
config_json += byte
try:
config = json.loads(config_json.decode("utf-8"))
except (UnicodeDecodeError, json.JSONDecodeError) as exc:
raise InvalidModelError() from exc
try:
config = json.loads(config_json.decode("utf-8"))
except (UnicodeDecodeError, json.JSONDecodeError):
raise InvalidModelError()
try:
names = config["names"]
max_ngram_length = config["max_ngram_length"]
hash_algorithm = config["hash_algorithm"]
except KeyError as exc:
raise InvalidModelError() from exc
try:
names = config["names"]
max_ngram_length = config["max_ngram_length"]
hash_algorithm = config["hash_algorithm"]
except KeyError:
raise InvalidModelError()
if not (
isinstance(names, list) and isinstance(max_ngram_length, int)
) or not all(isinstance(name, str) for name in names):
if not (
isinstance(names, list) and isinstance(max_ngram_length, int)
) or not all([isinstance(name, str) for name in names]):
raise InvalidModelError()
weight_code_length = 6 + 2 * len(names)
weights: Dict[int, List[int]] = {}
while True:
code = encoded_model.read(weight_code_length)
if not code:
break
elif len(code) != weight_code_length:
raise InvalidModelError()
weight_code_length = 6 + 2 * len(names)
weights[int.from_bytes(code[:6], "big")] = [
int.from_bytes(value, "big")
for value in [code[x : x + 2] for x in range(6, len(code), 2)]
]
weights: Dict[int, List[int]] = {}
while True:
code = encoded_model.read(weight_code_length)
if not code:
break
if len(code) != weight_code_length:
raise InvalidModelError()
weights[int.from_bytes(code[:6], "big")] = [
int.from_bytes(value, "big")
for value in [code[x : x + 2] for x in range(6, len(code), 2)]
]
return Model(weights, names, max_ngram_length, hash_algorithm)
return Model(weights, names, max_ngram_length, hash_algorithm)

View File

@ -7,7 +7,7 @@ from typing import List, Dict, Tuple
def pack(
directory: str, print_exceptions: bool = False
) -> Tuple[List[Dict[str, str]], List[Tuple[OSError]]]:
) -> Tuple[List[Dict[str, str]], List[Tuple[Exception]]]:
paths = os.listdir(directory)
texts: Dict[str, List[str]] = {}
exceptions = []
@ -17,18 +17,16 @@ def pack(
try:
for file in os.listdir(os.path.join(directory, path)):
try:
with open(
os.path.join(directory, path, file), encoding="utf-8"
) as input_file:
texts[path].append(input_file.read())
except OSError as error:
exceptions.append((error,))
with open(os.path.join(directory, path, file)) as f:
texts[path].append(f.read())
except Exception as e:
exceptions.append((e,))
if print_exceptions:
print(error, file=sys.stderr)
except OSError as error:
exceptions.append((error,))
print(e, file=sys.stderr)
except Exception as e:
exceptions.append((e,))
if print_exceptions:
print(error, file=sys.stderr)
print(e, file=sys.stderr)
raw_model = []

View File

@ -1,9 +1,9 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import unicodedata
from typing import List, cast
from typing import List, Union, Callable, Any, cast
import hashlib
import emoji
import unicodedata
def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
@ -37,12 +37,12 @@ def tokenize(text: str, max_ngram_length: int = 1) -> List[str]:
if max_ngram_length == 1:
return tokens
ngrams = []
for ngram_length in range(1, max_ngram_length + 1):
for index in range(len(tokens) + 1 - ngram_length):
ngrams.append(" ".join(tokens[index : index + ngram_length]))
return ngrams
else:
ngrams = []
for ngram_length in range(1, max_ngram_length + 1):
for index in range(len(tokens) + 1 - ngram_length):
ngrams.append(" ".join(tokens[index : index + ngram_length]))
return ngrams
def _hash_single(token: str, hash_function: type) -> int:
@ -69,15 +69,15 @@ def _get_hash_function(hash_algorithm: str) -> type:
"sha3_384",
}:
return cast(type, getattr(hashlib, hash_algorithm))
raise ValueError("not a valid hash function: " + hash_algorithm)
else:
raise ValueError("not a valid hash function: " + hash_algorithm)
def hash_single(token: str, hash_algorithm: str) -> int:
return _hash_single(token, _get_hash_function(hash_algorithm))
def hash_list(tokens: List[str], hash_algorithm: str) -> List[int]:
def hash(tokens: List[str], hash_algorithm: str) -> List[int]:
hash_function = _get_hash_function(hash_algorithm)
return [_hash_single(token, hash_function) for token in tokens]

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-3.0-or-later
import math
from typing import Sequence, Tuple, List
from typing import Sequence, Union, Tuple, List
def _mean(numbers: Sequence[float]) -> float:
@ -39,8 +39,8 @@ def _standard_deviation(numbers: Sequence[float]) -> float:
return math.sqrt(_mean(squared_deviations))
def weight(numbers: Sequence[float]) -> Tuple[float, List[float]]:
def weight(numbers: Sequence[float]) -> List[float]:
standard_deviation = _standard_deviation(numbers)
weight_assigned = standard_deviation * 2
weighted_numbers = [i * weight_assigned for i in numbers]
return weight_assigned, weighted_numbers
weight = standard_deviation * 2
weighted_numbers = [i * weight for i in numbers]
return weight, weighted_numbers

View File

@ -13,4 +13,4 @@ with open("models/raw.json") as f:
with open("models/benchmark_text.txt") as f:
text = f.read()
cProfile.run("gptc.Model.compile(raw_model, max_ngram_length)")
cProfile.run("gptc.compile(raw_model, max_ngram_length)")