Compare commits
4 Commits
62c3c27ddd
...
48639f5d8d
Author | SHA1 | Date | |
---|---|---|---|
48639f5d8d | |||
a207e281e7 | |||
e272ab42d1 | |||
bd0028a108 |
12
README.md
12
README.md
|
@ -4,6 +4,12 @@ General-purpose text classifier in Python
|
|||
|
||||
GPTC provides both a CLI tool and a Python library.
|
||||
|
||||
## Installation
|
||||
|
||||
pip install gptc[emoji] # handles emojis! (see section "Emoji")
|
||||
# Or, if you don't need emoji support,
|
||||
pip install gptc # no dependencies!
|
||||
|
||||
## CLI Tool
|
||||
|
||||
### Classifying text
|
||||
|
@ -72,6 +78,12 @@ reduced to the one used when compiling the model.
|
|||
Models compiled with older versions of GPTC which did not support ngrams are
|
||||
handled the same way as models compiled with `max_ngram_length=1`.
|
||||
|
||||
## Emoji
|
||||
|
||||
If the [`emoji`](https://pypi.org/project/emoji/) package is installed, GPTC
|
||||
will automatically handle emojis the same way as words. If it is not installed,
|
||||
GPTC will still work but will ignore emojis.
|
||||
|
||||
## Model format
|
||||
|
||||
This section explains the raw model format, which is how you should create and
|
||||
|
|
|
@ -33,7 +33,9 @@ print(
|
|||
)
|
||||
|
||||
|
||||
classifier = gptc.Classifier(gptc.compile(raw_model, max_ngram_length), max_ngram_length)
|
||||
classifier = gptc.Classifier(
|
||||
gptc.compile(raw_model, max_ngram_length), max_ngram_length
|
||||
)
|
||||
print(
|
||||
"Average classification time over",
|
||||
classify_iterations,
|
||||
|
|
|
@ -6,19 +6,34 @@ import json
|
|||
import sys
|
||||
import gptc
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="General Purpose Text Classifier", prog="gptc"
|
||||
)
|
||||
subparsers = parser.add_subparsers(dest="subparser_name", required=True)
|
||||
|
||||
compile_parser = subparsers.add_parser("compile", help="compile a raw model")
|
||||
compile_parser = subparsers.add_parser(
|
||||
"compile", help="compile a raw model"
|
||||
)
|
||||
compile_parser.add_argument("model", help="raw model to compile")
|
||||
compile_parser.add_argument("--max-ngram-length", "-n", help="maximum ngram length", type=int, default=1)
|
||||
compile_parser.add_argument(
|
||||
"--max-ngram-length",
|
||||
"-n",
|
||||
help="maximum ngram length",
|
||||
type=int,
|
||||
default=1,
|
||||
)
|
||||
|
||||
classify_parser = subparsers.add_parser("classify", help="classify text")
|
||||
classify_parser.add_argument("model", help="compiled model to use")
|
||||
classify_parser.add_argument("--max-ngram-length", "-n", help="maximum ngram length", type=int, default=1)
|
||||
classify_parser.add_argument(
|
||||
"--max-ngram-length",
|
||||
"-n",
|
||||
help="maximum ngram length",
|
||||
type=int,
|
||||
default=1,
|
||||
)
|
||||
group = classify_parser.add_mutually_exclusive_group()
|
||||
group.add_argument(
|
||||
"-j",
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
# SPDX-License-Identifier: LGPL-3.0-or-later
|
||||
|
||||
import gptc.tokenizer
|
||||
from typing import Iterable, Mapping, List, Dict, Union
|
||||
|
||||
|
||||
def compile(raw_model, max_ngram_length=1):
|
||||
def compile(
|
||||
raw_model: Iterable[Mapping[str, str]], max_ngram_length: int = 1
|
||||
) -> Dict[str, Union[int, List[Union[str, int]]]]:
|
||||
"""Compile a raw model.
|
||||
|
||||
Parameters
|
||||
|
@ -21,7 +24,7 @@ def compile(raw_model, max_ngram_length=1):
|
|||
|
||||
"""
|
||||
|
||||
categories = {}
|
||||
categories: Dict[str, str] = {}
|
||||
|
||||
for portion in raw_model:
|
||||
text = gptc.tokenizer.tokenize(portion["text"], max_ngram_length)
|
||||
|
@ -31,7 +34,7 @@ def compile(raw_model, max_ngram_length=1):
|
|||
except KeyError:
|
||||
categories[category] = text
|
||||
|
||||
categories_by_count = {}
|
||||
categories_by_count: Dict[str, Dict[str, float]] = {}
|
||||
|
||||
names = []
|
||||
|
||||
|
@ -49,7 +52,7 @@ def compile(raw_model, max_ngram_length=1):
|
|||
categories_by_count[category][word] = 1 / len(
|
||||
categories[category]
|
||||
)
|
||||
word_weights = {}
|
||||
word_weights: Dict[str, Dict[str, float]] = {}
|
||||
for category, words in categories_by_count.items():
|
||||
for word, value in words.items():
|
||||
try:
|
||||
|
@ -57,7 +60,7 @@ def compile(raw_model, max_ngram_length=1):
|
|||
except KeyError:
|
||||
word_weights[word] = {category: value}
|
||||
|
||||
model = {}
|
||||
model: Dict[str, Union[int, List[Union[str, int]]]] = {}
|
||||
for word, weights in word_weights.items():
|
||||
total = sum(weights.values())
|
||||
model[word] = []
|
||||
|
|
|
@ -1,13 +1,35 @@
|
|||
# SPDX-License-Identifier: LGPL-3.0-or-later
|
||||
|
||||
try:
|
||||
import emoji
|
||||
|
||||
has_emoji = True
|
||||
except ImportError:
|
||||
has_emoji = False
|
||||
|
||||
|
||||
def tokenize(text, max_ngram_length=1):
|
||||
"""Convert a string to a list of lemmas."""
|
||||
text = text.lower()
|
||||
|
||||
if has_emoji:
|
||||
parts = []
|
||||
highest_end = 0
|
||||
for emoji_part in emoji.emoji_list(text):
|
||||
parts += list(text[highest_end : emoji_part["match_start"]])
|
||||
parts.append(emoji_part["emoji"])
|
||||
highest_end = emoji_part["match_end"]
|
||||
parts += list(text[highest_end:])
|
||||
text = [part for part in parts if part]
|
||||
|
||||
tokens = [""]
|
||||
|
||||
for char in text.lower():
|
||||
for char in text:
|
||||
if char.isalpha() or char == "'":
|
||||
tokens[-1] += char
|
||||
elif has_emoji and emoji.is_emoji(char):
|
||||
tokens.append(char)
|
||||
tokens.append("")
|
||||
elif tokens[-1] != "":
|
||||
tokens.append("")
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user