Add CLI for Model.get()
This commit is contained in:
parent
25192ffddf
commit
b1228edd9c
|
@ -25,6 +25,13 @@ Alternatively, if you only need the most likely category, you can use this:
|
||||||
This will prompt for a string and classify it, outputting the category on
|
This will prompt for a string and classify it, outputting the category on
|
||||||
stdout (or "None" if it cannot determine anything).
|
stdout (or "None" if it cannot determine anything).
|
||||||
|
|
||||||
|
### Checking individual words or ngrams
|
||||||
|
|
||||||
|
gptc check <compiled model file> <token or ngram>
|
||||||
|
|
||||||
|
This is very similar to `gptc classify`, except it takes the input as an
|
||||||
|
argument, and it treats the input as a single token or ngram.
|
||||||
|
|
||||||
### Compiling models
|
### Compiling models
|
||||||
|
|
||||||
gptc compile [-n <max_ngram_length>] [-c <min_count>] <raw model file>
|
gptc compile [-n <max_ngram_length>] [-c <min_count>] <raw model file>
|
||||||
|
|
|
@ -53,6 +53,10 @@ def main() -> None:
|
||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
check_parser = subparsers.add_parser("check", help="check one word or ngram in model")
|
||||||
|
check_parser.add_argument("model", help="compiled model to use")
|
||||||
|
check_parser.add_argument("token", help="token or ngram to check")
|
||||||
|
|
||||||
pack_parser = subparsers.add_parser("pack", help="pack a model from a directory")
|
pack_parser = subparsers.add_parser("pack", help="pack a model from a directory")
|
||||||
pack_parser.add_argument("model", help="directory containing model")
|
pack_parser.add_argument("model", help="directory containing model")
|
||||||
|
|
||||||
|
@ -81,6 +85,10 @@ def main() -> None:
|
||||||
else:
|
else:
|
||||||
probabilities = model.confidence(text, args.max_ngram_length)
|
probabilities = model.confidence(text, args.max_ngram_length)
|
||||||
print(json.dumps(probabilities))
|
print(json.dumps(probabilities))
|
||||||
|
elif args.subparser_name == "check":
|
||||||
|
with open(args.model, "rb") as f:
|
||||||
|
model = gptc.deserialize(f.read())
|
||||||
|
print(json.dumps(model.get(args.token)))
|
||||||
else:
|
else:
|
||||||
print(json.dumps(gptc.pack(args.model, True)[0]))
|
print(json.dumps(gptc.pack(args.model, True)[0]))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user